Cargando…

A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study

As recently demonstrated by the COVID-19 pandemic, large-scale pathogen genomic data are crucial to characterize transmission patterns of human infectious diseases. Yet, current methods to process raw sequence data into analysis-ready variants remain slow to scale, hampering rapid surveillance effor...

Descripción completa

Detalles Bibliográficos
Autores principales: Carpi, Giovanna, Gorenstein, Lev, Harkins, Timothy T, Samadi, Mehrzad, Vats, Pankaj
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487672/
https://www.ncbi.nlm.nih.gov/pubmed/35945154
http://dx.doi.org/10.1093/bib/bbac314
_version_ 1784792502702702592
author Carpi, Giovanna
Gorenstein, Lev
Harkins, Timothy T
Samadi, Mehrzad
Vats, Pankaj
author_facet Carpi, Giovanna
Gorenstein, Lev
Harkins, Timothy T
Samadi, Mehrzad
Vats, Pankaj
author_sort Carpi, Giovanna
collection PubMed
description As recently demonstrated by the COVID-19 pandemic, large-scale pathogen genomic data are crucial to characterize transmission patterns of human infectious diseases. Yet, current methods to process raw sequence data into analysis-ready variants remain slow to scale, hampering rapid surveillance efforts and epidemiological investigations for disease control. Here, we introduce an accelerated, scalable, reproducible, and cost-effective framework for pathogen genomic variant identification and present an evaluation of its performance and accuracy across benchmark datasets of Plasmodium falciparum malaria genomes. We demonstrate superior performance of the GPU framework relative to standard pipelines with mean execution time and computational costs reduced by 27× and 4.6×, respectively, while delivering 99.9% accuracy at enhanced reproducibility.
format Online
Article
Text
id pubmed-9487672
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-94876722022-09-21 A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study Carpi, Giovanna Gorenstein, Lev Harkins, Timothy T Samadi, Mehrzad Vats, Pankaj Brief Bioinform Case Study As recently demonstrated by the COVID-19 pandemic, large-scale pathogen genomic data are crucial to characterize transmission patterns of human infectious diseases. Yet, current methods to process raw sequence data into analysis-ready variants remain slow to scale, hampering rapid surveillance efforts and epidemiological investigations for disease control. Here, we introduce an accelerated, scalable, reproducible, and cost-effective framework for pathogen genomic variant identification and present an evaluation of its performance and accuracy across benchmark datasets of Plasmodium falciparum malaria genomes. We demonstrate superior performance of the GPU framework relative to standard pipelines with mean execution time and computational costs reduced by 27× and 4.6×, respectively, while delivering 99.9% accuracy at enhanced reproducibility. Oxford University Press 2022-08-09 /pmc/articles/PMC9487672/ /pubmed/35945154 http://dx.doi.org/10.1093/bib/bbac314 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Case Study
Carpi, Giovanna
Gorenstein, Lev
Harkins, Timothy T
Samadi, Mehrzad
Vats, Pankaj
A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study
title A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study
title_full A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study
title_fullStr A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study
title_full_unstemmed A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study
title_short A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study
title_sort gpu-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study
topic Case Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487672/
https://www.ncbi.nlm.nih.gov/pubmed/35945154
http://dx.doi.org/10.1093/bib/bbac314
work_keys_str_mv AT carpigiovanna agpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy
AT gorensteinlev agpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy
AT harkinstimothyt agpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy
AT samadimehrzad agpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy
AT vatspankaj agpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy
AT carpigiovanna gpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy
AT gorensteinlev gpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy
AT harkinstimothyt gpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy
AT samadimehrzad gpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy
AT vatspankaj gpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy