Cargando…
A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study
As recently demonstrated by the COVID-19 pandemic, large-scale pathogen genomic data are crucial to characterize transmission patterns of human infectious diseases. Yet, current methods to process raw sequence data into analysis-ready variants remain slow to scale, hampering rapid surveillance effor...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487672/ https://www.ncbi.nlm.nih.gov/pubmed/35945154 http://dx.doi.org/10.1093/bib/bbac314 |
_version_ | 1784792502702702592 |
---|---|
author | Carpi, Giovanna Gorenstein, Lev Harkins, Timothy T Samadi, Mehrzad Vats, Pankaj |
author_facet | Carpi, Giovanna Gorenstein, Lev Harkins, Timothy T Samadi, Mehrzad Vats, Pankaj |
author_sort | Carpi, Giovanna |
collection | PubMed |
description | As recently demonstrated by the COVID-19 pandemic, large-scale pathogen genomic data are crucial to characterize transmission patterns of human infectious diseases. Yet, current methods to process raw sequence data into analysis-ready variants remain slow to scale, hampering rapid surveillance efforts and epidemiological investigations for disease control. Here, we introduce an accelerated, scalable, reproducible, and cost-effective framework for pathogen genomic variant identification and present an evaluation of its performance and accuracy across benchmark datasets of Plasmodium falciparum malaria genomes. We demonstrate superior performance of the GPU framework relative to standard pipelines with mean execution time and computational costs reduced by 27× and 4.6×, respectively, while delivering 99.9% accuracy at enhanced reproducibility. |
format | Online Article Text |
id | pubmed-9487672 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-94876722022-09-21 A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study Carpi, Giovanna Gorenstein, Lev Harkins, Timothy T Samadi, Mehrzad Vats, Pankaj Brief Bioinform Case Study As recently demonstrated by the COVID-19 pandemic, large-scale pathogen genomic data are crucial to characterize transmission patterns of human infectious diseases. Yet, current methods to process raw sequence data into analysis-ready variants remain slow to scale, hampering rapid surveillance efforts and epidemiological investigations for disease control. Here, we introduce an accelerated, scalable, reproducible, and cost-effective framework for pathogen genomic variant identification and present an evaluation of its performance and accuracy across benchmark datasets of Plasmodium falciparum malaria genomes. We demonstrate superior performance of the GPU framework relative to standard pipelines with mean execution time and computational costs reduced by 27× and 4.6×, respectively, while delivering 99.9% accuracy at enhanced reproducibility. Oxford University Press 2022-08-09 /pmc/articles/PMC9487672/ /pubmed/35945154 http://dx.doi.org/10.1093/bib/bbac314 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Case Study Carpi, Giovanna Gorenstein, Lev Harkins, Timothy T Samadi, Mehrzad Vats, Pankaj A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study |
title | A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study |
title_full | A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study |
title_fullStr | A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study |
title_full_unstemmed | A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study |
title_short | A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study |
title_sort | gpu-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study |
topic | Case Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487672/ https://www.ncbi.nlm.nih.gov/pubmed/35945154 http://dx.doi.org/10.1093/bib/bbac314 |
work_keys_str_mv | AT carpigiovanna agpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy AT gorensteinlev agpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy AT harkinstimothyt agpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy AT samadimehrzad agpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy AT vatspankaj agpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy AT carpigiovanna gpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy AT gorensteinlev gpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy AT harkinstimothyt gpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy AT samadimehrzad gpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy AT vatspankaj gpuacceleratedcomputeframeworkforpathogengenomicvariantidentificationtoaidgenomicepidemiologyofinfectiousdiseaseamalariacasestudy |