Cargando…
Deciphering signatures of natural selection via deep learning
Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect...
Autores principales: | Qin, Xinghu, Chiang, Charleston W K, Gaggiotti, Oscar E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487700/ https://www.ncbi.nlm.nih.gov/pubmed/36056746 http://dx.doi.org/10.1093/bib/bbac354 |
Ejemplares similares
-
KLFDAPC: a supervised machine learning approach for spatial genetic structure analysis
por: Qin, Xinghu, et al.
Publicado: (2022) -
spaCI: deciphering spatial cellular communications through adaptive graph model
por: Tang, Ziyang, et al.
Publicado: (2022) -
AD-Syn-Net: systematic identification of Alzheimer’s disease-associated mutation and co-mutation vulnerabilities via deep learning
por: Pan, Xingxin, et al.
Publicado: (2023) -
DeepImmuno: deep learning-empowered prediction and generation of immunogenic peptides for T-cell immunity
por: Li, Guangyuan, et al.
Publicado: (2021) -
SWEET: a single-sample network inference method for deciphering individual features in disease
por: Chen, Hsin-Hua, et al.
Publicado: (2023)