Cargando…
Discovering trends and hotspots of biosafety and biosecurity research via machine learning
Coronavirus disease 2019 (COVID-19) has infected hundreds of millions of people and killed millions of them. As an RNA virus, COVID-19 is more susceptible to variation than other viruses. Many problems involved in this epidemic have made biosafety and biosecurity (hereafter collectively referred to...
Autores principales: | Guan, Renchu, Pang, Haoyu, Liang, Yanchun, Shao, Zhongjun, Gao, Xin, Xu, Dong, Feng, Xiaoyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487701/ https://www.ncbi.nlm.nih.gov/pubmed/35596953 http://dx.doi.org/10.1093/bib/bbac194 |
Ejemplares similares
-
Discovering gene regulatory networks of multiple phenotypic groups using dynamic Bayesian networks
por: Suter, Polina, et al.
Publicado: (2022) -
KLFDAPC: a supervised machine learning approach for spatial genetic structure analysis
por: Qin, Xinghu, et al.
Publicado: (2022) -
Machine learning for RNA 2D structure prediction benchmarked on experimental data
por: Justyna, Marek, et al.
Publicado: (2023) -
Characterization on the oncogenic effect of the missense mutations of p53 via machine learning
por: Pan, Qisheng, et al.
Publicado: (2023) -
Predicting protein–membrane interfaces of peripheral membrane proteins using ensemble machine learning
por: Chatzigoulas, Alexios, et al.
Publicado: (2022)