Cargando…
Tracking mutational semantics of SARS-CoV-2 genomes
Natural language processing (NLP) algorithms process linguistic data in order to discover the associated word semantics and develop models that can describe or even predict the latent meanings of the data. The applications of NLP become multi-fold while dealing with dynamic or temporally evolving da...
Autores principales: | Singh, Rohan, Nagpal, Sunil, Pinna, Nishal K., Mande, Sharmila S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487856/ https://www.ncbi.nlm.nih.gov/pubmed/36127400 http://dx.doi.org/10.1038/s41598-022-20000-5 |
Ejemplares similares
-
Can machines learn the mutation signatures of SARS-CoV-2 and enable viral-genotype guided predictive prognosis?
por: Nagpal, Sunil, et al.
Publicado: (2022) -
Does immune recognition of SARS-CoV2 epitopes vary between different ethnic groups?
por: Bose, Tungadri, et al.
Publicado: (2021) -
Can Targeting Non-Contiguous V-Regions With Paired-End Sequencing Improve 16S rRNA-Based Taxonomic Resolution of Microbiomes?: An In Silico Evaluation
por: Pinna, Nishal Kumar, et al.
Publicado: (2019) -
Environmental insults and compensative responses: when microbiome meets cancer
por: Nagpal, Sunil, et al.
Publicado: (2023) -
Microbial community profiling shows dysbiosis in the lesional skin of Vitiligo subjects
por: Ganju, Parul, et al.
Publicado: (2016)