Cargando…
Sex differences in training-induced activity of the ubiquitin proteasome system in the dorsal hippocampus and medial prefrontal cortex of male and female mice
The ubiquitin proteasome system (UPS) is a primary mechanism through which proteins are degraded in cells. UPS activity in the dorsal hippocampus (DH) is necessary for multiple types of memory, including object memory, in male rodents. However, sex differences in DH UPS activation after fear conditi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488027/ https://www.ncbi.nlm.nih.gov/pubmed/36206392 http://dx.doi.org/10.1101/lm.053492.121 |
Sumario: | The ubiquitin proteasome system (UPS) is a primary mechanism through which proteins are degraded in cells. UPS activity in the dorsal hippocampus (DH) is necessary for multiple types of memory, including object memory, in male rodents. However, sex differences in DH UPS activation after fear conditioning suggest that other forms of learning may also differentially regulate DH UPS activity in males and females. Here, we examined markers of UPS activity in the synaptic and cytoplasmic fractions of DH and medial prefrontal cortex (mPFC) tissue collected 1 h following object training. In males, training increased phosphorylation of proteasomal subunit Rpt6, 20S proteasome activity, and the amount of PSD-95 in the DH synaptic fraction, as well as proteasome activity in the mPFC synaptic fraction. In females, training did not affect measures of UPS or synaptic activity in the DH synaptic fraction or in either mPFC fraction but increased Rpt6 phosphorylation in the DH cytoplasmic fraction. Overall, training-induced UPS activity was greater in males than in females, greater in the DH than in the mPFC, and greater in synaptic fractions than in cytosol. These data suggest that object training drives sex-specific alterations in UPS activity across brain regions and subcellular compartments important for memory. |
---|