Cargando…
Electrochemistry-stimulated environmental bioremediation: Development of applicable modular electrode and system scale-up
Bioelectrochemical systems (BESs) have been studied extensively during the past decades owing primarily to their versatility and potential in addressing the water-energy-resource nexus. In stark contrast to the significant advancements that have been made in developing innovative processes for pollu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488061/ https://www.ncbi.nlm.nih.gov/pubmed/36159603 http://dx.doi.org/10.1016/j.ese.2020.100050 |
Sumario: | Bioelectrochemical systems (BESs) have been studied extensively during the past decades owing primarily to their versatility and potential in addressing the water-energy-resource nexus. In stark contrast to the significant advancements that have been made in developing innovative processes for pollution control and bioresource/bioenergy recovery, minimal progress has been achieved in demonstrating the feasibility of BESs in scaled-up applications. This lack of scaled-up demonstration could be ascribed to the absence of suitable electrode modules (EMs) engineered for large-scale application. In this study, we report a scalable composite-engineered EM (total volume of 1 m(3)), fabricated using graphite-coated stainless steel and carbon felt, that allows integrating BESs into mainstream wastewater treatment technologies. The cost-effectiveness and easy scalability of this EM provides a viable and clear path to facilitate the transition between the success of the lab studies and applications of BESs to solve multiple pressing environmental issues at full-scale. |
---|