Cargando…

Explosive transitions to synchronization in networks of frequency dipoles

We reveal that an introduction of frequency-weighted inter-layer coupling term in networks of frequency dipoles can induce explosive synchronization transitions. The reason for explosive synchronization is that the oscillators with synchronization superiority are moderately suppressed. The findings...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Liuhua, Zhu, Shu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488809/
https://www.ncbi.nlm.nih.gov/pubmed/36126075
http://dx.doi.org/10.1371/journal.pone.0274807
Descripción
Sumario:We reveal that an introduction of frequency-weighted inter-layer coupling term in networks of frequency dipoles can induce explosive synchronization transitions. The reason for explosive synchronization is that the oscillators with synchronization superiority are moderately suppressed. The findings show that a super-linear correlation induces explosive synchronization in networks of frequency dipoles, while a linear or sub-linear correlation excites chimera-like states. Clearly, the synchronization transition mode of networks of frequency dipoles is controlled by the power-law exponent. In addition, by means of the mean-field approximation, we obtain the critical values of the coupling strength within and between layers in two limit cases. The results of theoretical analysis are in good agreement with those of numerical simulation. Compared with the previous models, the model proposed in this paper retains the topological structure of network and the intrinsic properties of oscillators, so it is easy to realize pinning control.