Cargando…

Stability criteria for the consumption and exchange of essential resources

Models of consumer effects on a shared resource environment have helped clarify how the interplay of consumer traits and resource supply impact stable coexistence. Recent models generalize this picture to include the exchange of resources alongside resource competition. These models exemplify the fa...

Descripción completa

Detalles Bibliográficos
Autores principales: Gibbs, Theo, Zhang, Yifan, Miller, Zachary R., O’Dwyer, James P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488833/
https://www.ncbi.nlm.nih.gov/pubmed/36074781
http://dx.doi.org/10.1371/journal.pcbi.1010521
_version_ 1784792748250890240
author Gibbs, Theo
Zhang, Yifan
Miller, Zachary R.
O’Dwyer, James P.
author_facet Gibbs, Theo
Zhang, Yifan
Miller, Zachary R.
O’Dwyer, James P.
author_sort Gibbs, Theo
collection PubMed
description Models of consumer effects on a shared resource environment have helped clarify how the interplay of consumer traits and resource supply impact stable coexistence. Recent models generalize this picture to include the exchange of resources alongside resource competition. These models exemplify the fact that although consumers shape the resource environment, the outcome of consumer interactions is context-dependent: such models can have either stable or unstable equilibria, depending on the resource supply. However, these recent models focus on a simplified version of microbial metabolism where the depletion of resources always leads to consumer growth. Here, we model an arbitrarily large system of consumers governed by Liebig’s law, where species require and deplete multiple resources, but each consumer’s growth rate is only limited by a single one of these resources. Resources that are taken up but not incorporated into new biomass are leaked back into the environment, possibly transformed by intracellular reactions, thereby tying the mismatch between depletion and growth to cross-feeding. For this set of dynamics, we show that feasible equilibria can be either stable or unstable, again depending on the resource environment. We identify special consumption and production networks which protect the community from instability when resources are scarce. Using simulations, we demonstrate that the qualitative stability patterns derived analytically apply to a broader class of network structures and resource inflow profiles, including cases where multiple species coexist on only one externally supplied resource. Our stability criteria bear some resemblance to classic stability results for pairwise interactions, but also demonstrate how environmental context can shape coexistence patterns when resource limitation and exchange are modeled directly.
format Online
Article
Text
id pubmed-9488833
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-94888332022-09-21 Stability criteria for the consumption and exchange of essential resources Gibbs, Theo Zhang, Yifan Miller, Zachary R. O’Dwyer, James P. PLoS Comput Biol Research Article Models of consumer effects on a shared resource environment have helped clarify how the interplay of consumer traits and resource supply impact stable coexistence. Recent models generalize this picture to include the exchange of resources alongside resource competition. These models exemplify the fact that although consumers shape the resource environment, the outcome of consumer interactions is context-dependent: such models can have either stable or unstable equilibria, depending on the resource supply. However, these recent models focus on a simplified version of microbial metabolism where the depletion of resources always leads to consumer growth. Here, we model an arbitrarily large system of consumers governed by Liebig’s law, where species require and deplete multiple resources, but each consumer’s growth rate is only limited by a single one of these resources. Resources that are taken up but not incorporated into new biomass are leaked back into the environment, possibly transformed by intracellular reactions, thereby tying the mismatch between depletion and growth to cross-feeding. For this set of dynamics, we show that feasible equilibria can be either stable or unstable, again depending on the resource environment. We identify special consumption and production networks which protect the community from instability when resources are scarce. Using simulations, we demonstrate that the qualitative stability patterns derived analytically apply to a broader class of network structures and resource inflow profiles, including cases where multiple species coexist on only one externally supplied resource. Our stability criteria bear some resemblance to classic stability results for pairwise interactions, but also demonstrate how environmental context can shape coexistence patterns when resource limitation and exchange are modeled directly. Public Library of Science 2022-09-08 /pmc/articles/PMC9488833/ /pubmed/36074781 http://dx.doi.org/10.1371/journal.pcbi.1010521 Text en © 2022 Gibbs et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Gibbs, Theo
Zhang, Yifan
Miller, Zachary R.
O’Dwyer, James P.
Stability criteria for the consumption and exchange of essential resources
title Stability criteria for the consumption and exchange of essential resources
title_full Stability criteria for the consumption and exchange of essential resources
title_fullStr Stability criteria for the consumption and exchange of essential resources
title_full_unstemmed Stability criteria for the consumption and exchange of essential resources
title_short Stability criteria for the consumption and exchange of essential resources
title_sort stability criteria for the consumption and exchange of essential resources
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488833/
https://www.ncbi.nlm.nih.gov/pubmed/36074781
http://dx.doi.org/10.1371/journal.pcbi.1010521
work_keys_str_mv AT gibbstheo stabilitycriteriafortheconsumptionandexchangeofessentialresources
AT zhangyifan stabilitycriteriafortheconsumptionandexchangeofessentialresources
AT millerzacharyr stabilitycriteriafortheconsumptionandexchangeofessentialresources
AT odwyerjamesp stabilitycriteriafortheconsumptionandexchangeofessentialresources