Cargando…

Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO

BACKGROUND: Sarcopenia is a common chronic disease characterized by age-related decline in skeletal muscle mass and function, and the lack of diagnostic biomarkers makes community-based screening problematic. METHODS: Three gene expression profiles related with sarcopenia were downloaded and merged...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Shangjin, Ling, Ming, Chen, Cong, Cai, Xiaoxi, Yang, Fengjian, Fan, Yongqian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489359/
https://www.ncbi.nlm.nih.gov/pubmed/36147639
http://dx.doi.org/10.1155/2022/7483911
_version_ 1784792861059842048
author Lin, Shangjin
Ling, Ming
Chen, Cong
Cai, Xiaoxi
Yang, Fengjian
Fan, Yongqian
author_facet Lin, Shangjin
Ling, Ming
Chen, Cong
Cai, Xiaoxi
Yang, Fengjian
Fan, Yongqian
author_sort Lin, Shangjin
collection PubMed
description BACKGROUND: Sarcopenia is a common chronic disease characterized by age-related decline in skeletal muscle mass and function, and the lack of diagnostic biomarkers makes community-based screening problematic. METHODS: Three gene expression profiles related with sarcopenia were downloaded and merged by searching the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and eigengenes of a module in the merged dataset were identified by differential expression analysis and weighted gene coexpression network analysis (WGCNA), and common genes (CGs) were defined as the intersection of DEGs and eigengenes of a module. CGs were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Subsequently, the least absolute shrinkage and selection operator (LASSO) analysis was performed to screen the CGs for identifying the diagnostic biomarkers of sarcopenia. Based on the diagnostic biomarkers, we established a novel nomogram model of sarcopenia. At last, we validated the diagnostic biomarkers and evaluated the diagnostic performance of the nomogram model by the area under curve (AUC) value. RESULTS: We screened out 107 DEGs and 788 eigengenes in the turquoise module, and 72 genes were selected as CGs of sarcopenia by intersection. GO analysis showed that CGs were mainly involved in metal ion detoxification and mitochondrial structure, and KEGG analysis revealed that CGs were mainly enriched in the mineral absorption, glucagon signaling pathway, FoxO signaling pathway, insulin signaling pathway, AMPK signaling pathway, and estrogen signaling pathway. Then, six diagnostic biomarkers (ARHGAP36, FAM171A1, GPCPD1, MT1X, ZNF415, and RXRG) were identified by LASSO analysis. Finally, the validation AUC values indicated that the six diagnostic biomarkers had high diagnostic accuracy for sarcopenia. CONCLUSION: We identified six diagnostic biomarkers with high diagnostic performance, providing new insights into the incidence and progression of sarcopenia in future research.
format Online
Article
Text
id pubmed-9489359
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-94893592022-09-21 Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO Lin, Shangjin Ling, Ming Chen, Cong Cai, Xiaoxi Yang, Fengjian Fan, Yongqian Biomed Res Int Research Article BACKGROUND: Sarcopenia is a common chronic disease characterized by age-related decline in skeletal muscle mass and function, and the lack of diagnostic biomarkers makes community-based screening problematic. METHODS: Three gene expression profiles related with sarcopenia were downloaded and merged by searching the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and eigengenes of a module in the merged dataset were identified by differential expression analysis and weighted gene coexpression network analysis (WGCNA), and common genes (CGs) were defined as the intersection of DEGs and eigengenes of a module. CGs were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Subsequently, the least absolute shrinkage and selection operator (LASSO) analysis was performed to screen the CGs for identifying the diagnostic biomarkers of sarcopenia. Based on the diagnostic biomarkers, we established a novel nomogram model of sarcopenia. At last, we validated the diagnostic biomarkers and evaluated the diagnostic performance of the nomogram model by the area under curve (AUC) value. RESULTS: We screened out 107 DEGs and 788 eigengenes in the turquoise module, and 72 genes were selected as CGs of sarcopenia by intersection. GO analysis showed that CGs were mainly involved in metal ion detoxification and mitochondrial structure, and KEGG analysis revealed that CGs were mainly enriched in the mineral absorption, glucagon signaling pathway, FoxO signaling pathway, insulin signaling pathway, AMPK signaling pathway, and estrogen signaling pathway. Then, six diagnostic biomarkers (ARHGAP36, FAM171A1, GPCPD1, MT1X, ZNF415, and RXRG) were identified by LASSO analysis. Finally, the validation AUC values indicated that the six diagnostic biomarkers had high diagnostic accuracy for sarcopenia. CONCLUSION: We identified six diagnostic biomarkers with high diagnostic performance, providing new insights into the incidence and progression of sarcopenia in future research. Hindawi 2022-09-13 /pmc/articles/PMC9489359/ /pubmed/36147639 http://dx.doi.org/10.1155/2022/7483911 Text en Copyright © 2022 Shangjin Lin et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Lin, Shangjin
Ling, Ming
Chen, Cong
Cai, Xiaoxi
Yang, Fengjian
Fan, Yongqian
Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO
title Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO
title_full Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO
title_fullStr Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO
title_full_unstemmed Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO
title_short Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO
title_sort screening potential diagnostic biomarkers for age-related sarcopenia in the elderly population by wgcna and lasso
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489359/
https://www.ncbi.nlm.nih.gov/pubmed/36147639
http://dx.doi.org/10.1155/2022/7483911
work_keys_str_mv AT linshangjin screeningpotentialdiagnosticbiomarkersforagerelatedsarcopeniaintheelderlypopulationbywgcnaandlasso
AT lingming screeningpotentialdiagnosticbiomarkersforagerelatedsarcopeniaintheelderlypopulationbywgcnaandlasso
AT chencong screeningpotentialdiagnosticbiomarkersforagerelatedsarcopeniaintheelderlypopulationbywgcnaandlasso
AT caixiaoxi screeningpotentialdiagnosticbiomarkersforagerelatedsarcopeniaintheelderlypopulationbywgcnaandlasso
AT yangfengjian screeningpotentialdiagnosticbiomarkersforagerelatedsarcopeniaintheelderlypopulationbywgcnaandlasso
AT fanyongqian screeningpotentialdiagnosticbiomarkersforagerelatedsarcopeniaintheelderlypopulationbywgcnaandlasso