Cargando…
An Improved Image Classification Method for Cervical Precancerous Lesions Based on ShuffleNet
With the rapid development of deep learning, automatic lesion detection is used widely in clinical screening. To solve the problem that existing deep learning-based cervical precancerous lesion detection algorithms cannot meet high classification accuracy and fast running speed at the same time, a S...
Autores principales: | Fang, Shan, Yang, Jiahui, Wang, Minghui, Liu, Chunhui, Liu, Shuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489397/ https://www.ncbi.nlm.nih.gov/pubmed/36148422 http://dx.doi.org/10.1155/2022/9675628 |
Ejemplares similares
-
Micro-expression recognition model based on TV-L1 optical flow method and improved ShuffleNet
por: Liu, Yanju, et al.
Publicado: (2022) -
Fusion of hyperspectral imaging (HSI) and RGB for identification of soybean kernel damages using ShuffleNet with convolutional optimization and cross stage partial architecture
por: Zheng, Ling, et al.
Publicado: (2023) -
Intelligent Fault Diagnosis Method Based on VMD-Hilbert Spectrum and ShuffleNet-V2: Application to the Gears in a Mine Scraper Conveyor Gearbox
por: Wang, Weibing, et al.
Publicado: (2023) -
A Holistic Approach to Identify and Classify COVID-19 from Chest Radiographs, ECG, and CT-Scan Images Using ShuffleNet Convolutional Neural Network
por: Ullah, Naeem, et al.
Publicado: (2023) -
Microendoscopy in vivo for the pathological diagnosis of cervical precancerous lesions and early cervical cancer
por: Liu, Min, et al.
Publicado: (2023)