Cargando…
DefectTrack: a deep learning-based multi-object tracking algorithm for quantitative defect analysis of in-situ TEM videos in real-time
In-situ irradiation transmission electron microscopy (TEM) offers unique insights into the millisecond-timescale post-cascade process, such as the lifetime and thermal stability of defect clusters, vital to the mechanistic understanding of irradiation damage in nuclear materials. Converting in-situ...
Autores principales: | Sainju, Rajat, Chen, Wei-Ying, Schaefer, Samuel, Yang, Qian, Ding, Caiwen, Li, Meimei, Zhu, Yuanyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489724/ https://www.ncbi.nlm.nih.gov/pubmed/36127375 http://dx.doi.org/10.1038/s41598-022-19697-1 |
Ejemplares similares
-
Deep Learning for Semantic Segmentation of Defects in Advanced STEM Images of Steels
por: Roberts, Graham, et al.
Publicado: (2019) -
An Objective Comparison of Cell Tracking Algorithms
por: Ulman, Vladimír, et al.
Publicado: (2017) -
Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking
por: Xue, Ming, et al.
Publicado: (2014) -
Multi-Object Tracking in Heterogeneous environments (MOTHe) for animal video recordings
por: Rathore, Akanksha, et al.
Publicado: (2023) -
Fast tracking after repair of congenital heart defects
por: Garg, Rajnish Kumar, et al.
Publicado: (2020)