Cargando…
Predicting acute kidney injury risk in acute myocardial infarction patients: An artificial intelligence model using medical information mart for intensive care databases
BACKGROUND: Predictive models based on machine learning have been widely used in clinical practice. Patients with acute myocardial infarction (AMI) are prone to the risk of acute kidney injury (AKI), which results in a poor prognosis for the patient. The aim of this study was to develop a machine le...
Autores principales: | Cai, Dabei, Xiao, Tingting, Zou, Ailin, Mao, Lipeng, Chi, Boyu, Wang, Yu, Wang, Qingjie, Ji, Yuan, Sun, Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489917/ https://www.ncbi.nlm.nih.gov/pubmed/36158815 http://dx.doi.org/10.3389/fcvm.2022.964894 |
Ejemplares similares
-
Dapagliflozin reduces risk of heart failure rehospitalization in diabetic acute myocardial infarction patients: a propensity score-matched analysis
por: Mao, Lipeng, et al.
Publicado: (2023) -
Association of plasma free triiodothyronine levels with contrast-induced acute kidney injury and short-term survival in patients with acute myocardial infarction
por: Sun, Ling, et al.
Publicado: (2022) -
A New Scoring System for Predicting Ventricular Arrhythmia Risk in Patients with Acute Myocardial Infarction
por: Sun, Ling, et al.
Publicado: (2023) -
Empagliflozin-Pretreated Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Attenuated Heart Injury
por: Chi, Boyu, et al.
Publicado: (2023) -
HIF-1α overexpression in mesenchymal stem cell-derived exosome-encapsulated arginine-glycine-aspartate (RGD) hydrogels boost therapeutic efficacy of cardiac repair after myocardial infarction
por: Wang, Qingjie, et al.
Publicado: (2021)