Cargando…

Cannabidiol counters the effects of a dominant-negative pathogenic Kv7.2 variant

Epilepsy and neurodevelopmental disorders can arise from pathogenic variants of KCNQ (Kv7) channels. A patient with developmental and epileptic encephalopathy exhibited an in-frame deletion of histidine 260 on Kv7.2. Coexpression of Kv7.2 mutant (mut) subunits with Kv7.3 invoked a decrease in curren...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhan, Xiaoqin, Drummond-Main, Chris, Greening, Dylan, Yao, Jinjing, Chen, S.W.R., Appendino, J.P., Au, P. Y. Billie, Turner, Ray W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490039/
https://www.ncbi.nlm.nih.gov/pubmed/36157585
http://dx.doi.org/10.1016/j.isci.2022.105092
Descripción
Sumario:Epilepsy and neurodevelopmental disorders can arise from pathogenic variants of KCNQ (Kv7) channels. A patient with developmental and epileptic encephalopathy exhibited an in-frame deletion of histidine 260 on Kv7.2. Coexpression of Kv7.2 mutant (mut) subunits with Kv7.3 invoked a decrease in current density, a depolarizing shift in voltage for activation, and a decrease in membrane conductance. Biotinylation revealed an increased level of surface Kv7.2mut compared to Kv7.3 with no change in total membrane protein expression. Super-resolution and FRET imaging confirmed heteromeric channel formation and a higher expression density of Kv7.2mut. Cannabidiol (1 μM) offset the effects of Kv7.2mut by inducing a hyperpolarizing shift in voltage for activation independent of CB1 or CB2 receptors. These data reveal that the ability for cannabidiol to reduce the effects of a pathogenic Kv7.2 variant supports its use as a potential therapeutic to reduce seizure activity.