Cargando…

Polymer and small molecule mechanochemistry: closer than ever

The formation and scission of chemical bonds facilitated by mechanical force (mechanochemistry) can be accomplished through various experimental strategies. Among them, ultrasonication of polymeric matrices and ball milling of reaction partners have become the two leading approaches to carry out pol...

Descripción completa

Detalles Bibliográficos
Autor principal: Hernández, José G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490067/
https://www.ncbi.nlm.nih.gov/pubmed/36158177
http://dx.doi.org/10.3762/bjoc.18.128
Descripción
Sumario:The formation and scission of chemical bonds facilitated by mechanical force (mechanochemistry) can be accomplished through various experimental strategies. Among them, ultrasonication of polymeric matrices and ball milling of reaction partners have become the two leading approaches to carry out polymer and small molecule mechanochemistry, respectively. Often, the methodological differences between these practical strategies seem to have created two seemingly distinct lines of thought within the field of mechanochemistry. However, in this Perspective article, the reader will encounter a series of studies in which some aspects believed to be inherently related to either polymer or small molecule mechanochemistry sometimes overlap, evidencing the connection between both approaches.