Cargando…

Knockdown of the long non-coding RNA CACNA1G-AS1 enhances cytotoxicity and apoptosis of human diffuse large B cell lymphoma by regulating miR-3160-5p

Abstract: Long non-coding RNAs (lncRNAs) have been confirmed to be connected with tumor proliferation, apoptosis, metastasis and recurrence. Previous studies have indicated that lncRNA calcium voltage-gated channel subunit α1 G (CACNA1G)-antisense 1 (AS1) can function as a pro-oncogene in several ty...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Qiqi, Zhang, Yan, Zhao, Meiqing, Zhao, Xia, Xue, Hongwei, Xiao, Shuxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490116/
https://www.ncbi.nlm.nih.gov/pubmed/36160896
http://dx.doi.org/10.3892/etm.2022.11564
Descripción
Sumario:Abstract: Long non-coding RNAs (lncRNAs) have been confirmed to be connected with tumor proliferation, apoptosis, metastasis and recurrence. Previous studies have indicated that lncRNA calcium voltage-gated channel subunit α1 G (CACNA1G)-antisense 1 (AS1) can function as a pro-oncogene in several types of cancer. However, the specific role and mechanism of CACNA1G-AS1 have not been fully elucidated in human diffuse large B cell lymphoma (DLBCL). In the present study, CACNA1G-AS1 expression was verified in DLBCL tissues and cells by reverse transcription-quantitative PCR, and the relationship between CACNA1G-AS1 and microRNA (miR)-3160-5p was confirmed using luciferase reporter assays. After CACNA1G-AS1-knockdown and miR-3160-5p-overexpression, MTT, colony formation and flow cytometry assays were conducted to assess the changes in the cytotoxicity and apoptosis of OCI-Ly10 and SUDHL-4 cells. In addition, in vivo experiments were performed to determine the impact of CACNA1G-AS1-knockdown on tumor growth and apoptosis. It was revealed that CACNA1G-AS1 was highly expressed in DLBCL tissues and cells and that expression of CACNA1G-AS1 was associated with the clinical stage of DLBCL. Functionally, CACNA1G-AS1-knockdown was demonstrated to increase cytotoxicity and expedite apoptosis in DLBCL cells in vitro and in vivo. In addition, CACNA1G-AS1 could downregulate miR-3160-5p by targeting binding in DLBCL cells. Overexpression of miR-3160-5p had the same effects on the cytotoxicity and apoptosis of DLBCL cells as CACNA1G-AS1-knockdown. Overall, the present study revealed that CACNA1G-AS1-knockdown and miR-3160-5p-overexpression could prevent DLBCL carcinogenesis, which might provide novel therapeutic targets for DLBCL.