Cargando…
Richness and distribution of endangered orchid species under different climate scenarios on the Qinghai-Tibetan Plateau
Predicting the potential influences of climate change on the richness and distribution is essential for the protection of endangered species. Most orchid species are narrowly distributed in specific habitats and are very vulnerable to habitat disturbance, especially for endangered orchid species on...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490128/ https://www.ncbi.nlm.nih.gov/pubmed/36160966 http://dx.doi.org/10.3389/fpls.2022.948189 |
_version_ | 1784793023578636288 |
---|---|
author | Hu, Huawei Wei, Yanqiang Wang, Wenying Suonan, Ji Wang, Shixiong Chen, Zhe Guan, Jinhong Deng, Yanfang |
author_facet | Hu, Huawei Wei, Yanqiang Wang, Wenying Suonan, Ji Wang, Shixiong Chen, Zhe Guan, Jinhong Deng, Yanfang |
author_sort | Hu, Huawei |
collection | PubMed |
description | Predicting the potential influences of climate change on the richness and distribution is essential for the protection of endangered species. Most orchid species are narrowly distributed in specific habitats and are very vulnerable to habitat disturbance, especially for endangered orchid species on the Qinghai-Tibetan Plateau (QTP). In this study, we simulated the potential influences of climate change on the richness and distribution of 17 endangered orchid species on the QTP using the MaxEnt model based on the shared socioeconomic pathways scenarios (SSPs) in the 2050s and 2070s. The results showed that aspect, annual precipitation, elevation, mean temperature of driest quarter, topsoil pH (H(2)O), and topsoil sand fraction had a large influence on the potential distribution of endangered orchid species on the QTP. The area of potential distribution for orchid species richness ranging from 6 to 11 under the current climate scenario was 14,462 km(2) (accounting for 0.56% of QTP), and it was mostly distributed in the southeastern part of QTP. The area of orchid species richness ranging from 6 to 11 under SSP370 in the 2070s was the smallest (9,370 km(2): only accounting for 0.36% of QTP). The largest area of potential distribution for orchid species richness ranging from 6 to 11 was 45,394 km(2) (accounting for 1.77% of QTP) under SSP585 in the 2070s. The total potential distribution area of 17 orchid species richness all increased from the 2050s to the 2070s under SSP126, SSP245, SSP370, and SSP585. The orchid species richness basically declined with the increasing elevation under current and future climate scenarios. The mean elevation of potential distribution for orchid species richness ranging from 6 to 11 under different climate scenarios was between 3,267 and 3,463 m. The mean elevation of potential distribution for orchid species richness ranging from 6 to 11 decreased from SSP126 (3,457 m) to SSP585 (3,267 m) in the 2070s. Based on these findings, future conservation plans should be concentrated on the selection of protected areas in the southeastern part of QTP to protect the endangered orchid species. |
format | Online Article Text |
id | pubmed-9490128 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94901282022-09-22 Richness and distribution of endangered orchid species under different climate scenarios on the Qinghai-Tibetan Plateau Hu, Huawei Wei, Yanqiang Wang, Wenying Suonan, Ji Wang, Shixiong Chen, Zhe Guan, Jinhong Deng, Yanfang Front Plant Sci Plant Science Predicting the potential influences of climate change on the richness and distribution is essential for the protection of endangered species. Most orchid species are narrowly distributed in specific habitats and are very vulnerable to habitat disturbance, especially for endangered orchid species on the Qinghai-Tibetan Plateau (QTP). In this study, we simulated the potential influences of climate change on the richness and distribution of 17 endangered orchid species on the QTP using the MaxEnt model based on the shared socioeconomic pathways scenarios (SSPs) in the 2050s and 2070s. The results showed that aspect, annual precipitation, elevation, mean temperature of driest quarter, topsoil pH (H(2)O), and topsoil sand fraction had a large influence on the potential distribution of endangered orchid species on the QTP. The area of potential distribution for orchid species richness ranging from 6 to 11 under the current climate scenario was 14,462 km(2) (accounting for 0.56% of QTP), and it was mostly distributed in the southeastern part of QTP. The area of orchid species richness ranging from 6 to 11 under SSP370 in the 2070s was the smallest (9,370 km(2): only accounting for 0.36% of QTP). The largest area of potential distribution for orchid species richness ranging from 6 to 11 was 45,394 km(2) (accounting for 1.77% of QTP) under SSP585 in the 2070s. The total potential distribution area of 17 orchid species richness all increased from the 2050s to the 2070s under SSP126, SSP245, SSP370, and SSP585. The orchid species richness basically declined with the increasing elevation under current and future climate scenarios. The mean elevation of potential distribution for orchid species richness ranging from 6 to 11 under different climate scenarios was between 3,267 and 3,463 m. The mean elevation of potential distribution for orchid species richness ranging from 6 to 11 decreased from SSP126 (3,457 m) to SSP585 (3,267 m) in the 2070s. Based on these findings, future conservation plans should be concentrated on the selection of protected areas in the southeastern part of QTP to protect the endangered orchid species. Frontiers Media S.A. 2022-09-07 /pmc/articles/PMC9490128/ /pubmed/36160966 http://dx.doi.org/10.3389/fpls.2022.948189 Text en Copyright © 2022 Hu, Wei, Wang, Suonan, Wang, Chen, Guan and Deng. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Hu, Huawei Wei, Yanqiang Wang, Wenying Suonan, Ji Wang, Shixiong Chen, Zhe Guan, Jinhong Deng, Yanfang Richness and distribution of endangered orchid species under different climate scenarios on the Qinghai-Tibetan Plateau |
title | Richness and distribution of endangered orchid species under different climate scenarios on the Qinghai-Tibetan Plateau |
title_full | Richness and distribution of endangered orchid species under different climate scenarios on the Qinghai-Tibetan Plateau |
title_fullStr | Richness and distribution of endangered orchid species under different climate scenarios on the Qinghai-Tibetan Plateau |
title_full_unstemmed | Richness and distribution of endangered orchid species under different climate scenarios on the Qinghai-Tibetan Plateau |
title_short | Richness and distribution of endangered orchid species under different climate scenarios on the Qinghai-Tibetan Plateau |
title_sort | richness and distribution of endangered orchid species under different climate scenarios on the qinghai-tibetan plateau |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490128/ https://www.ncbi.nlm.nih.gov/pubmed/36160966 http://dx.doi.org/10.3389/fpls.2022.948189 |
work_keys_str_mv | AT huhuawei richnessanddistributionofendangeredorchidspeciesunderdifferentclimatescenariosontheqinghaitibetanplateau AT weiyanqiang richnessanddistributionofendangeredorchidspeciesunderdifferentclimatescenariosontheqinghaitibetanplateau AT wangwenying richnessanddistributionofendangeredorchidspeciesunderdifferentclimatescenariosontheqinghaitibetanplateau AT suonanji richnessanddistributionofendangeredorchidspeciesunderdifferentclimatescenariosontheqinghaitibetanplateau AT wangshixiong richnessanddistributionofendangeredorchidspeciesunderdifferentclimatescenariosontheqinghaitibetanplateau AT chenzhe richnessanddistributionofendangeredorchidspeciesunderdifferentclimatescenariosontheqinghaitibetanplateau AT guanjinhong richnessanddistributionofendangeredorchidspeciesunderdifferentclimatescenariosontheqinghaitibetanplateau AT dengyanfang richnessanddistributionofendangeredorchidspeciesunderdifferentclimatescenariosontheqinghaitibetanplateau |