Cargando…
CRISPR-Cas9 screen in human embryonic stem cells to identify genes required for neural differentiation
Human embryonic stem cells (hESCs) continuously self-renew in culture and can be induced to differentiate into multiple cell types, including neural progenitor cells (NPCs). Here, we present a protocol to perform a CRISPR-Cas9 screen in hESCs to identify regulators that promote SOX1 expression durin...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490198/ https://www.ncbi.nlm.nih.gov/pubmed/36115024 http://dx.doi.org/10.1016/j.xpro.2022.101682 |
Sumario: | Human embryonic stem cells (hESCs) continuously self-renew in culture and can be induced to differentiate into multiple cell types, including neural progenitor cells (NPCs). Here, we present a protocol to perform a CRISPR-Cas9 screen in hESCs to identify regulators that promote SOX1 expression during NPC formation. This screening protocol can be adapted with other endpoint reporters for the identification of genes involved in the commitment of hESCs to other cell lineages. For complete details on the use and execution of this protocol, please refer to Sivakumar et al. (2022). |
---|