Cargando…

Accurate de novo design of membrane-traversing macrocycles

We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbon...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhardwaj, Gaurav, O’Connor, Jacob, Rettie, Stephen, Huang, Yen-Hua, Ramelot, Theresa A., Mulligan, Vikram Khipple, Alpkilic, Gizem Gokce, Palmer, Jonathan, Bera, Asim K., Bick, Matthew J., Di Piazza, Maddalena, Li, Xinting, Hosseinzadeh, Parisa, Craven, Timothy W., Tejero, Roberto, Lauko, Anna, Choi, Ryan, Glynn, Calina, Dong, Linlin, Griffin, Robert, van Voorhis, Wesley C., Rodriguez, Jose, Stewart, Lance, Montelione, Gaetano T., Craik, David, Baker, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490236/
https://www.ncbi.nlm.nih.gov/pubmed/36041435
http://dx.doi.org/10.1016/j.cell.2022.07.019
_version_ 1784793043291865088
author Bhardwaj, Gaurav
O’Connor, Jacob
Rettie, Stephen
Huang, Yen-Hua
Ramelot, Theresa A.
Mulligan, Vikram Khipple
Alpkilic, Gizem Gokce
Palmer, Jonathan
Bera, Asim K.
Bick, Matthew J.
Di Piazza, Maddalena
Li, Xinting
Hosseinzadeh, Parisa
Craven, Timothy W.
Tejero, Roberto
Lauko, Anna
Choi, Ryan
Glynn, Calina
Dong, Linlin
Griffin, Robert
van Voorhis, Wesley C.
Rodriguez, Jose
Stewart, Lance
Montelione, Gaetano T.
Craik, David
Baker, David
author_facet Bhardwaj, Gaurav
O’Connor, Jacob
Rettie, Stephen
Huang, Yen-Hua
Ramelot, Theresa A.
Mulligan, Vikram Khipple
Alpkilic, Gizem Gokce
Palmer, Jonathan
Bera, Asim K.
Bick, Matthew J.
Di Piazza, Maddalena
Li, Xinting
Hosseinzadeh, Parisa
Craven, Timothy W.
Tejero, Roberto
Lauko, Anna
Choi, Ryan
Glynn, Calina
Dong, Linlin
Griffin, Robert
van Voorhis, Wesley C.
Rodriguez, Jose
Stewart, Lance
Montelione, Gaetano T.
Craik, David
Baker, David
author_sort Bhardwaj, Gaurav
collection PubMed
description We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10(−6) cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.
format Online
Article
Text
id pubmed-9490236
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-94902362022-10-16 Accurate de novo design of membrane-traversing macrocycles Bhardwaj, Gaurav O’Connor, Jacob Rettie, Stephen Huang, Yen-Hua Ramelot, Theresa A. Mulligan, Vikram Khipple Alpkilic, Gizem Gokce Palmer, Jonathan Bera, Asim K. Bick, Matthew J. Di Piazza, Maddalena Li, Xinting Hosseinzadeh, Parisa Craven, Timothy W. Tejero, Roberto Lauko, Anna Choi, Ryan Glynn, Calina Dong, Linlin Griffin, Robert van Voorhis, Wesley C. Rodriguez, Jose Stewart, Lance Montelione, Gaetano T. Craik, David Baker, David Cell Article We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10(−6) cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics. Cell Press 2022-09-15 /pmc/articles/PMC9490236/ /pubmed/36041435 http://dx.doi.org/10.1016/j.cell.2022.07.019 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bhardwaj, Gaurav
O’Connor, Jacob
Rettie, Stephen
Huang, Yen-Hua
Ramelot, Theresa A.
Mulligan, Vikram Khipple
Alpkilic, Gizem Gokce
Palmer, Jonathan
Bera, Asim K.
Bick, Matthew J.
Di Piazza, Maddalena
Li, Xinting
Hosseinzadeh, Parisa
Craven, Timothy W.
Tejero, Roberto
Lauko, Anna
Choi, Ryan
Glynn, Calina
Dong, Linlin
Griffin, Robert
van Voorhis, Wesley C.
Rodriguez, Jose
Stewart, Lance
Montelione, Gaetano T.
Craik, David
Baker, David
Accurate de novo design of membrane-traversing macrocycles
title Accurate de novo design of membrane-traversing macrocycles
title_full Accurate de novo design of membrane-traversing macrocycles
title_fullStr Accurate de novo design of membrane-traversing macrocycles
title_full_unstemmed Accurate de novo design of membrane-traversing macrocycles
title_short Accurate de novo design of membrane-traversing macrocycles
title_sort accurate de novo design of membrane-traversing macrocycles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490236/
https://www.ncbi.nlm.nih.gov/pubmed/36041435
http://dx.doi.org/10.1016/j.cell.2022.07.019
work_keys_str_mv AT bhardwajgaurav accuratedenovodesignofmembranetraversingmacrocycles
AT oconnorjacob accuratedenovodesignofmembranetraversingmacrocycles
AT rettiestephen accuratedenovodesignofmembranetraversingmacrocycles
AT huangyenhua accuratedenovodesignofmembranetraversingmacrocycles
AT ramelottheresaa accuratedenovodesignofmembranetraversingmacrocycles
AT mulliganvikramkhipple accuratedenovodesignofmembranetraversingmacrocycles
AT alpkilicgizemgokce accuratedenovodesignofmembranetraversingmacrocycles
AT palmerjonathan accuratedenovodesignofmembranetraversingmacrocycles
AT beraasimk accuratedenovodesignofmembranetraversingmacrocycles
AT bickmatthewj accuratedenovodesignofmembranetraversingmacrocycles
AT dipiazzamaddalena accuratedenovodesignofmembranetraversingmacrocycles
AT lixinting accuratedenovodesignofmembranetraversingmacrocycles
AT hosseinzadehparisa accuratedenovodesignofmembranetraversingmacrocycles
AT craventimothyw accuratedenovodesignofmembranetraversingmacrocycles
AT tejeroroberto accuratedenovodesignofmembranetraversingmacrocycles
AT laukoanna accuratedenovodesignofmembranetraversingmacrocycles
AT choiryan accuratedenovodesignofmembranetraversingmacrocycles
AT glynncalina accuratedenovodesignofmembranetraversingmacrocycles
AT donglinlin accuratedenovodesignofmembranetraversingmacrocycles
AT griffinrobert accuratedenovodesignofmembranetraversingmacrocycles
AT vanvoorhiswesleyc accuratedenovodesignofmembranetraversingmacrocycles
AT rodriguezjose accuratedenovodesignofmembranetraversingmacrocycles
AT stewartlance accuratedenovodesignofmembranetraversingmacrocycles
AT montelionegaetanot accuratedenovodesignofmembranetraversingmacrocycles
AT craikdavid accuratedenovodesignofmembranetraversingmacrocycles
AT bakerdavid accuratedenovodesignofmembranetraversingmacrocycles