Cargando…
Accurate de novo design of membrane-traversing macrocycles
We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbon...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490236/ https://www.ncbi.nlm.nih.gov/pubmed/36041435 http://dx.doi.org/10.1016/j.cell.2022.07.019 |
_version_ | 1784793043291865088 |
---|---|
author | Bhardwaj, Gaurav O’Connor, Jacob Rettie, Stephen Huang, Yen-Hua Ramelot, Theresa A. Mulligan, Vikram Khipple Alpkilic, Gizem Gokce Palmer, Jonathan Bera, Asim K. Bick, Matthew J. Di Piazza, Maddalena Li, Xinting Hosseinzadeh, Parisa Craven, Timothy W. Tejero, Roberto Lauko, Anna Choi, Ryan Glynn, Calina Dong, Linlin Griffin, Robert van Voorhis, Wesley C. Rodriguez, Jose Stewart, Lance Montelione, Gaetano T. Craik, David Baker, David |
author_facet | Bhardwaj, Gaurav O’Connor, Jacob Rettie, Stephen Huang, Yen-Hua Ramelot, Theresa A. Mulligan, Vikram Khipple Alpkilic, Gizem Gokce Palmer, Jonathan Bera, Asim K. Bick, Matthew J. Di Piazza, Maddalena Li, Xinting Hosseinzadeh, Parisa Craven, Timothy W. Tejero, Roberto Lauko, Anna Choi, Ryan Glynn, Calina Dong, Linlin Griffin, Robert van Voorhis, Wesley C. Rodriguez, Jose Stewart, Lance Montelione, Gaetano T. Craik, David Baker, David |
author_sort | Bhardwaj, Gaurav |
collection | PubMed |
description | We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10(−6) cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics. |
format | Online Article Text |
id | pubmed-9490236 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-94902362022-10-16 Accurate de novo design of membrane-traversing macrocycles Bhardwaj, Gaurav O’Connor, Jacob Rettie, Stephen Huang, Yen-Hua Ramelot, Theresa A. Mulligan, Vikram Khipple Alpkilic, Gizem Gokce Palmer, Jonathan Bera, Asim K. Bick, Matthew J. Di Piazza, Maddalena Li, Xinting Hosseinzadeh, Parisa Craven, Timothy W. Tejero, Roberto Lauko, Anna Choi, Ryan Glynn, Calina Dong, Linlin Griffin, Robert van Voorhis, Wesley C. Rodriguez, Jose Stewart, Lance Montelione, Gaetano T. Craik, David Baker, David Cell Article We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6–12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6–12 residue size range cross membranes with an apparent permeability greater than 1 × 10(−6) cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics. Cell Press 2022-09-15 /pmc/articles/PMC9490236/ /pubmed/36041435 http://dx.doi.org/10.1016/j.cell.2022.07.019 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bhardwaj, Gaurav O’Connor, Jacob Rettie, Stephen Huang, Yen-Hua Ramelot, Theresa A. Mulligan, Vikram Khipple Alpkilic, Gizem Gokce Palmer, Jonathan Bera, Asim K. Bick, Matthew J. Di Piazza, Maddalena Li, Xinting Hosseinzadeh, Parisa Craven, Timothy W. Tejero, Roberto Lauko, Anna Choi, Ryan Glynn, Calina Dong, Linlin Griffin, Robert van Voorhis, Wesley C. Rodriguez, Jose Stewart, Lance Montelione, Gaetano T. Craik, David Baker, David Accurate de novo design of membrane-traversing macrocycles |
title | Accurate de novo design of membrane-traversing macrocycles |
title_full | Accurate de novo design of membrane-traversing macrocycles |
title_fullStr | Accurate de novo design of membrane-traversing macrocycles |
title_full_unstemmed | Accurate de novo design of membrane-traversing macrocycles |
title_short | Accurate de novo design of membrane-traversing macrocycles |
title_sort | accurate de novo design of membrane-traversing macrocycles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490236/ https://www.ncbi.nlm.nih.gov/pubmed/36041435 http://dx.doi.org/10.1016/j.cell.2022.07.019 |
work_keys_str_mv | AT bhardwajgaurav accuratedenovodesignofmembranetraversingmacrocycles AT oconnorjacob accuratedenovodesignofmembranetraversingmacrocycles AT rettiestephen accuratedenovodesignofmembranetraversingmacrocycles AT huangyenhua accuratedenovodesignofmembranetraversingmacrocycles AT ramelottheresaa accuratedenovodesignofmembranetraversingmacrocycles AT mulliganvikramkhipple accuratedenovodesignofmembranetraversingmacrocycles AT alpkilicgizemgokce accuratedenovodesignofmembranetraversingmacrocycles AT palmerjonathan accuratedenovodesignofmembranetraversingmacrocycles AT beraasimk accuratedenovodesignofmembranetraversingmacrocycles AT bickmatthewj accuratedenovodesignofmembranetraversingmacrocycles AT dipiazzamaddalena accuratedenovodesignofmembranetraversingmacrocycles AT lixinting accuratedenovodesignofmembranetraversingmacrocycles AT hosseinzadehparisa accuratedenovodesignofmembranetraversingmacrocycles AT craventimothyw accuratedenovodesignofmembranetraversingmacrocycles AT tejeroroberto accuratedenovodesignofmembranetraversingmacrocycles AT laukoanna accuratedenovodesignofmembranetraversingmacrocycles AT choiryan accuratedenovodesignofmembranetraversingmacrocycles AT glynncalina accuratedenovodesignofmembranetraversingmacrocycles AT donglinlin accuratedenovodesignofmembranetraversingmacrocycles AT griffinrobert accuratedenovodesignofmembranetraversingmacrocycles AT vanvoorhiswesleyc accuratedenovodesignofmembranetraversingmacrocycles AT rodriguezjose accuratedenovodesignofmembranetraversingmacrocycles AT stewartlance accuratedenovodesignofmembranetraversingmacrocycles AT montelionegaetanot accuratedenovodesignofmembranetraversingmacrocycles AT craikdavid accuratedenovodesignofmembranetraversingmacrocycles AT bakerdavid accuratedenovodesignofmembranetraversingmacrocycles |