Cargando…
Prediction model for potential depression using sex and age-reflected quantitative EEG biomarkers
Depression is a prevalent mental disorder in modern society, causing many people to suffer or even commit suicide. Psychiatrists and psychologists typically diagnose depression using representative tests, such as the Beck’s Depression Inventory (BDI) and the Hamilton Depression Rating Scale (HDRS),...
Autores principales: | Kim, Taehyoung, Park, Ukeob, Kang, Seung Wan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490263/ https://www.ncbi.nlm.nih.gov/pubmed/36159938 http://dx.doi.org/10.3389/fpsyt.2022.913890 |
Ejemplares similares
-
Quantitative Electroencephalogram Standardization: A Sex- and Age-Differentiated Normative Database
por: Ko, Juhee, et al.
Publicado: (2021) -
Potential Biomarkers for Predicting Depression in Diabetes Mellitus
por: Song, Xiuli, et al.
Publicado: (2021) -
Novel quantitative electroencephalogram feature image adapted for deep learning: Verification through classification of Alzheimer’s disease dementia
por: Jeong, Taegyun, et al.
Publicado: (2022) -
Prediction of Clinical Outcomes With EEG Microstate in Patients With Major Depressive Disorder
por: Yan, Danfeng, et al.
Publicado: (2021) -
PET-validated EEG-machine learning algorithm predicts brain amyloid pathology in pre-dementia Alzheimer’s disease
por: Kim, Nam Heon, et al.
Publicado: (2023)