Cargando…
Image registration and appearance adaptation in non-correspondent image regions for new MS lesions detection
Manual detection of newly formed lesions in multiple sclerosis is an important but tedious and difficult task. Several approaches for automating the detection of new lesions have recently been proposed, but they tend to either overestimate the actual amount of new lesions or to miss many lesions. In...
Autores principales: | Andresen, Julia, Uzunova, Hristina, Ehrhardt, Jan, Kepp, Timo, Handels, Heinz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490269/ https://www.ncbi.nlm.nih.gov/pubmed/36161180 http://dx.doi.org/10.3389/fnins.2022.981523 |
Ejemplares similares
-
Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies
por: Andresen, Julia, et al.
Publicado: (2022) -
A systematic comparison of generative models for medical images
por: Uzunova, Hristina, et al.
Publicado: (2022) -
Chronological Registration of OCT and Autofluorescence Findings in CSCR: Two Distinct Patterns in Disease Course
por: Santarossa, Monty, et al.
Publicado: (2022) -
Nonrigid registration with corresponding points constraint for automatic segmentation of cardiac DSCT images
por: Lu, Xuesong, et al.
Publicado: (2017) -
Automatic landmark annotation and dense correspondence registration for 3D human facial images
por: Guo, Jianya, et al.
Publicado: (2013)