Cargando…

Towards breath sensors that are self-powered by design

Piezoelectric materials are widely used to generate electric charge from mechanical deformation or vice versa. These strategies are increasingly common in implantable medical devices, where sensing must be done on small scales. In the case of a flow rate sensor, a sensor’s energy harvesting rate cou...

Descripción completa

Detalles Bibliográficos
Autores principales: Fitzgerald, Lucy, Lopez Ruiz, Luis, Zhu, Joe, Lach, John, Quinn, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490333/
https://www.ncbi.nlm.nih.gov/pubmed/36147941
http://dx.doi.org/10.1098/rsos.220895
Descripción
Sumario:Piezoelectric materials are widely used to generate electric charge from mechanical deformation or vice versa. These strategies are increasingly common in implantable medical devices, where sensing must be done on small scales. In the case of a flow rate sensor, a sensor’s energy harvesting rate could be mapped to that flow rate, making it ‘self-powered by design (SPD)’. Prior fluids-based SPD work has focused on turbulence-driven resonance and has been largely empirical. Here, we explore the possibility of sub-resonant SPD flow sensing in a human airway. We present a physical model of piezoelectric sensing/harvesting in the airway, which we validated with a benchtop experiment. Our work offers a model-based roadmap for implantable SPD sensing solutions. We also use the model to theorize a new form of SPD sensing that can detect broadband flow information.