Cargando…
A Bayesian modelling framework to quantify multiple sources of spatial variation for disease mapping
Spatial connectivity is an important consideration when modelling infectious disease data across a geographical region. Connectivity can arise for many reasons, including shared characteristics between regions and human or vector movement. Bayesian hierarchical models include structured random effec...
Autores principales: | Lee, Sophie A., Economou, Theodoros, Lowe, Rachel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490350/ https://www.ncbi.nlm.nih.gov/pubmed/36128702 http://dx.doi.org/10.1098/rsif.2022.0440 |
Ejemplares similares
-
Quantifying tissue growth, shape and collision via continuum models and Bayesian inference
por: Falcó, Carles, et al.
Publicado: (2023) -
Spatial evolution of human cultures inferred through Bayesian phylogenetic analysis
por: Takahashi, Takuya, et al.
Publicado: (2023) -
Quantifying the spatial pattern of dialect words spreading from a central population
por: Takahashi, Takuya, et al.
Publicado: (2020) -
PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation
por: Semenova, Elizaveta, et al.
Publicado: (2022) -
A comparison of metrics for quantifying cranial suture complexity
por: White, Heather E., et al.
Publicado: (2020)