Cargando…
An application based on bioinformatics and machine learning for risk prediction of sepsis at first clinical presentation using transcriptomic data
Background: Linking genotypic changes to phenotypic traits based on machine learning methods has various challenges. In this study, we developed a workflow based on bioinformatics and machine learning methods using transcriptomic data for sepsis obtained at the first clinical presentation for predic...
Autores principales: | Shi, Songchang, Pan, Xiaobin, Zhang, Lihui, Wang, Xincai, Zhuang, Yingfeng, Lin, Xingsheng, Shi, Songjing, Zheng, Jianzhang, Lin, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490444/ https://www.ncbi.nlm.nih.gov/pubmed/36159979 http://dx.doi.org/10.3389/fgene.2022.979529 |
Ejemplares similares
-
Evaluate prognostic accuracy of SOFA component score for mortality among adults with sepsis by machine learning method
por: Pan, Xiaobin, et al.
Publicado: (2023) -
Identification of early biomarkers of transcriptomics in alveolar macrophage for the prognosis of intubated ARDS patients
por: Shi, Songchang, et al.
Publicado: (2022) -
Significance of Early Postoperative Arterial Lactic Acid, Inferior Vena Cava Variability, and Central Venous Pressure in Hypovolemic Shock
por: Lin, Wei, et al.
Publicado: (2019) -
USP5 promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein
por: Shi, Songchang, et al.
Publicado: (2023) -
Identification of transcriptomics biomarkers for the early prediction of the prognosis of septic shock from pneumopathies
por: Shi, Songchang, et al.
Publicado: (2021)