Cargando…

External validation of a prediction model for estimating fat mass in children and adolescents in 19 countries: individual participant data meta-analysis

OBJECTIVE: To evaluate the performance of a UK based prediction model for estimating fat-free mass (and indirectly fat mass) in children and adolescents in non-UK settings. DESIGN: Individual participant data meta-analysis. SETTING: 19 countries. PARTICIPANTS: 5693 children and adolescents (49.7% bo...

Descripción completa

Detalles Bibliográficos
Autores principales: Hudda, Mohammed T, Wells, Jonathan C K, Adair, Linda S, Alvero-Cruz, Jose R A, Ashby-Thompson, Maxine N, Ballesteros-Vásquez, Martha N, Barrera-Exposito, Jesus, Caballero, Benjamin, Carnero, Elvis A, Cleghorn, Geoff J, Davies, Peter S W, Desmond, Malgorzata, Devakumar, Delan, Gallagher, Dympna, Guerrero-Alcocer, Elvia V, Haschke, Ferdinand, Horlick, Mary, Ben Jemaa, Houda, Khan, Ashraful I, Mankai, Amani, Monyeki, Makama A, Nashandi, Hilde L, Ortiz-Hernandez, Luis, Plasqui, Guy, Reichert, Felipe F, Robles-Sardin, Alma E, Rush, Elaine, Shypailo, Roman J, Sobiecki, Jakub G, ten Hoor, Gill A, Valdés, Jesús, Wickramasinghe, V Pujitha, Wong, William W, Riley, Richard D, Owen, Christopher G, Whincup, Peter H, Nightingale, Claire M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490487/
https://www.ncbi.nlm.nih.gov/pubmed/36130780
http://dx.doi.org/10.1136/bmj-2022-071185
_version_ 1784793095831814144
author Hudda, Mohammed T
Wells, Jonathan C K
Adair, Linda S
Alvero-Cruz, Jose R A
Ashby-Thompson, Maxine N
Ballesteros-Vásquez, Martha N
Barrera-Exposito, Jesus
Caballero, Benjamin
Carnero, Elvis A
Cleghorn, Geoff J
Davies, Peter S W
Desmond, Malgorzata
Devakumar, Delan
Gallagher, Dympna
Guerrero-Alcocer, Elvia V
Haschke, Ferdinand
Horlick, Mary
Ben Jemaa, Houda
Khan, Ashraful I
Mankai, Amani
Monyeki, Makama A
Nashandi, Hilde L
Ortiz-Hernandez, Luis
Plasqui, Guy
Reichert, Felipe F
Robles-Sardin, Alma E
Rush, Elaine
Shypailo, Roman J
Sobiecki, Jakub G
ten Hoor, Gill A
Valdés, Jesús
Wickramasinghe, V Pujitha
Wong, William W
Riley, Richard D
Owen, Christopher G
Whincup, Peter H
Nightingale, Claire M
author_facet Hudda, Mohammed T
Wells, Jonathan C K
Adair, Linda S
Alvero-Cruz, Jose R A
Ashby-Thompson, Maxine N
Ballesteros-Vásquez, Martha N
Barrera-Exposito, Jesus
Caballero, Benjamin
Carnero, Elvis A
Cleghorn, Geoff J
Davies, Peter S W
Desmond, Malgorzata
Devakumar, Delan
Gallagher, Dympna
Guerrero-Alcocer, Elvia V
Haschke, Ferdinand
Horlick, Mary
Ben Jemaa, Houda
Khan, Ashraful I
Mankai, Amani
Monyeki, Makama A
Nashandi, Hilde L
Ortiz-Hernandez, Luis
Plasqui, Guy
Reichert, Felipe F
Robles-Sardin, Alma E
Rush, Elaine
Shypailo, Roman J
Sobiecki, Jakub G
ten Hoor, Gill A
Valdés, Jesús
Wickramasinghe, V Pujitha
Wong, William W
Riley, Richard D
Owen, Christopher G
Whincup, Peter H
Nightingale, Claire M
author_sort Hudda, Mohammed T
collection PubMed
description OBJECTIVE: To evaluate the performance of a UK based prediction model for estimating fat-free mass (and indirectly fat mass) in children and adolescents in non-UK settings. DESIGN: Individual participant data meta-analysis. SETTING: 19 countries. PARTICIPANTS: 5693 children and adolescents (49.7% boys) aged 4 to 15 years with complete data on the predictors included in the UK based model (weight, height, age, sex, and ethnicity) and on the independently assessed outcome measure (fat-free mass determined by deuterium dilution assessment). MAIN OUTCOME MEASURES: The outcome of the UK based prediction model was natural log transformed fat-free mass (lnFFM). Predictive performance statistics of R(2), calibration slope, calibration-in-the-large, and root mean square error were assessed in each of the 19 countries and then pooled through random effects meta-analysis. Calibration plots were also derived for each country, including flexible calibration curves. RESULTS: The model showed good predictive ability in non-UK populations of children and adolescents, providing R(2) values of >75% in all countries and >90% in 11 of the 19 countries, and with good calibration (ie, agreement) of observed and predicted values. Root mean square error values (on fat-free mass scale) were <4 kg in 17 of the 19 settings. Pooled values (95% confidence intervals) of R(2), calibration slope, and calibration-in-the-large were 88.7% (85.9% to 91.4%), 0.98 (0.97 to 1.00), and 0.01 (−0.02 to 0.04), respectively. Heterogeneity was evident in the R(2) and calibration-in-the-large values across settings, but not in the calibration slope. Model performance did not vary markedly between boys and girls, age, ethnicity, and national income groups. To further improve the accuracy of the predictions, the model equation was recalibrated for the intercept in each setting so that country specific equations are available for future use. CONCLUSION: The UK based prediction model, which is based on readily available measures, provides predictions of childhood fat-free mass, and hence fat mass, in a range of non-UK settings that explain a large proportion of the variability in observed fat-free mass, and exhibit good calibration performance, especially after recalibration of the intercept for each population. The model demonstrates good generalisability in both low-middle income and high income populations of healthy children and adolescents aged 4-15 years.
format Online
Article
Text
id pubmed-9490487
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BMJ Publishing Group Ltd.
record_format MEDLINE/PubMed
spelling pubmed-94904872022-09-22 External validation of a prediction model for estimating fat mass in children and adolescents in 19 countries: individual participant data meta-analysis Hudda, Mohammed T Wells, Jonathan C K Adair, Linda S Alvero-Cruz, Jose R A Ashby-Thompson, Maxine N Ballesteros-Vásquez, Martha N Barrera-Exposito, Jesus Caballero, Benjamin Carnero, Elvis A Cleghorn, Geoff J Davies, Peter S W Desmond, Malgorzata Devakumar, Delan Gallagher, Dympna Guerrero-Alcocer, Elvia V Haschke, Ferdinand Horlick, Mary Ben Jemaa, Houda Khan, Ashraful I Mankai, Amani Monyeki, Makama A Nashandi, Hilde L Ortiz-Hernandez, Luis Plasqui, Guy Reichert, Felipe F Robles-Sardin, Alma E Rush, Elaine Shypailo, Roman J Sobiecki, Jakub G ten Hoor, Gill A Valdés, Jesús Wickramasinghe, V Pujitha Wong, William W Riley, Richard D Owen, Christopher G Whincup, Peter H Nightingale, Claire M BMJ Research OBJECTIVE: To evaluate the performance of a UK based prediction model for estimating fat-free mass (and indirectly fat mass) in children and adolescents in non-UK settings. DESIGN: Individual participant data meta-analysis. SETTING: 19 countries. PARTICIPANTS: 5693 children and adolescents (49.7% boys) aged 4 to 15 years with complete data on the predictors included in the UK based model (weight, height, age, sex, and ethnicity) and on the independently assessed outcome measure (fat-free mass determined by deuterium dilution assessment). MAIN OUTCOME MEASURES: The outcome of the UK based prediction model was natural log transformed fat-free mass (lnFFM). Predictive performance statistics of R(2), calibration slope, calibration-in-the-large, and root mean square error were assessed in each of the 19 countries and then pooled through random effects meta-analysis. Calibration plots were also derived for each country, including flexible calibration curves. RESULTS: The model showed good predictive ability in non-UK populations of children and adolescents, providing R(2) values of >75% in all countries and >90% in 11 of the 19 countries, and with good calibration (ie, agreement) of observed and predicted values. Root mean square error values (on fat-free mass scale) were <4 kg in 17 of the 19 settings. Pooled values (95% confidence intervals) of R(2), calibration slope, and calibration-in-the-large were 88.7% (85.9% to 91.4%), 0.98 (0.97 to 1.00), and 0.01 (−0.02 to 0.04), respectively. Heterogeneity was evident in the R(2) and calibration-in-the-large values across settings, but not in the calibration slope. Model performance did not vary markedly between boys and girls, age, ethnicity, and national income groups. To further improve the accuracy of the predictions, the model equation was recalibrated for the intercept in each setting so that country specific equations are available for future use. CONCLUSION: The UK based prediction model, which is based on readily available measures, provides predictions of childhood fat-free mass, and hence fat mass, in a range of non-UK settings that explain a large proportion of the variability in observed fat-free mass, and exhibit good calibration performance, especially after recalibration of the intercept for each population. The model demonstrates good generalisability in both low-middle income and high income populations of healthy children and adolescents aged 4-15 years. BMJ Publishing Group Ltd. 2022-09-21 /pmc/articles/PMC9490487/ /pubmed/36130780 http://dx.doi.org/10.1136/bmj-2022-071185 Text en © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) .
spellingShingle Research
Hudda, Mohammed T
Wells, Jonathan C K
Adair, Linda S
Alvero-Cruz, Jose R A
Ashby-Thompson, Maxine N
Ballesteros-Vásquez, Martha N
Barrera-Exposito, Jesus
Caballero, Benjamin
Carnero, Elvis A
Cleghorn, Geoff J
Davies, Peter S W
Desmond, Malgorzata
Devakumar, Delan
Gallagher, Dympna
Guerrero-Alcocer, Elvia V
Haschke, Ferdinand
Horlick, Mary
Ben Jemaa, Houda
Khan, Ashraful I
Mankai, Amani
Monyeki, Makama A
Nashandi, Hilde L
Ortiz-Hernandez, Luis
Plasqui, Guy
Reichert, Felipe F
Robles-Sardin, Alma E
Rush, Elaine
Shypailo, Roman J
Sobiecki, Jakub G
ten Hoor, Gill A
Valdés, Jesús
Wickramasinghe, V Pujitha
Wong, William W
Riley, Richard D
Owen, Christopher G
Whincup, Peter H
Nightingale, Claire M
External validation of a prediction model for estimating fat mass in children and adolescents in 19 countries: individual participant data meta-analysis
title External validation of a prediction model for estimating fat mass in children and adolescents in 19 countries: individual participant data meta-analysis
title_full External validation of a prediction model for estimating fat mass in children and adolescents in 19 countries: individual participant data meta-analysis
title_fullStr External validation of a prediction model for estimating fat mass in children and adolescents in 19 countries: individual participant data meta-analysis
title_full_unstemmed External validation of a prediction model for estimating fat mass in children and adolescents in 19 countries: individual participant data meta-analysis
title_short External validation of a prediction model for estimating fat mass in children and adolescents in 19 countries: individual participant data meta-analysis
title_sort external validation of a prediction model for estimating fat mass in children and adolescents in 19 countries: individual participant data meta-analysis
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490487/
https://www.ncbi.nlm.nih.gov/pubmed/36130780
http://dx.doi.org/10.1136/bmj-2022-071185
work_keys_str_mv AT huddamohammedt externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT wellsjonathanck externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT adairlindas externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT alverocruzjosera externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT ashbythompsonmaxinen externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT ballesterosvasquezmarthan externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT barreraexpositojesus externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT caballerobenjamin externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT carneroelvisa externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT cleghorngeoffj externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT daviespetersw externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT desmondmalgorzata externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT devakumardelan externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT gallagherdympna externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT guerreroalcocerelviav externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT haschkeferdinand externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT horlickmary externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT benjemaahouda externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT khanashrafuli externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT mankaiamani externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT monyekimakamaa externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT nashandihildel externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT ortizhernandezluis externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT plasquiguy externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT reichertfelipef externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT roblessardinalmae externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT rushelaine externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT shypailoromanj externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT sobieckijakubg externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT tenhoorgilla externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT valdesjesus externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT wickramasinghevpujitha externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT wongwilliamw externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT rileyrichardd externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT owenchristopherg externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT whincuppeterh externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis
AT nightingaleclairem externalvalidationofapredictionmodelforestimatingfatmassinchildrenandadolescentsin19countriesindividualparticipantdatametaanalysis