Cargando…

Population transcriptomic analysis identifies the comprehensive lncRNAs landscape of spike in wheat (Triticum aestivum L.)

BACKGROUND: Long noncoding RNAs (lncRNAs) are emerging as the important regulators involving in growth and development as well as stress response in plants. However, current lncRNA studies were mainly performed at the individual level and the significance of it is not well understood in wheat. RESUL...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Guang, Deng, Pingchuan, Guo, Qifan, Shi, Tingrui, Pan, Wenqiu, Cui, Licao, Liu, Xiaoqin, Nie, Xiaojun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490906/
https://www.ncbi.nlm.nih.gov/pubmed/36127641
http://dx.doi.org/10.1186/s12870-022-03828-x
Descripción
Sumario:BACKGROUND: Long noncoding RNAs (lncRNAs) are emerging as the important regulators involving in growth and development as well as stress response in plants. However, current lncRNA studies were mainly performed at the individual level and the significance of it is not well understood in wheat. RESULTS: In this study, the lncRNA landscape of wheat spike was characterized through analysing a total of 186 spike RNA-seq datasets from 93 wheat genotypes. A total of 35,913 lncRNAs as well as 1,619 lncRNA-mRNA pairs comprised of 443 lncRNAs and 464 mRNAs were obtained. Compared to coding genes, these lncRNAs displayed rather low conservation among wheat and other gramineous species. Based on re-sequencing data, the genetic variations of these lncRNA were investigated and obvious genetic bottleneck were found on them during wheat domestication process. Furthermore, 122 lncRNAs were found to act as ceRNA to regulate endogenous competition. Finally, association and co-localization analysis of the candidate lncRNA-mRNA pairs identified 170 lncRNAs and 167 target mRNAs significantly associated with spike-related traits, including lncRNA.127690.1/TraesCS2A02G518500.1 (PMEI) and lncRNA.104854.1/TraesCS6A02G050300.1 (ATG5) associated with heading date and spike length, respectively. CONCLUSIONS: This study reported the lncRNA landscape of wheat spike through the population transcriptome analysis, which not only contribute to better understand the wheat evolution from the perspective of lncRNA, but also lay the foundation for revealing roles of lncRNA playing in spike development. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-022-03828-x.