Cargando…

Identification of crucial lncRNAs and mRNAs in liver regeneration after portal vein ligation through weighted gene correlation network analysis

BACKGROUND: Portal vein ligation (PVL)-induced liver hypertrophy increases future liver remnant (FLR) volume and improves resectability of large hepatic carcinoma. However, the molecular mechanism by which PVL facilitates liver hypertrophy remains poorly understood. METHODS: To gain mechanistic insi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Yan, Li, Zhishuai, Zhang, Jixiang, Liu, Mingqi, Jiang, Xiaoqing, Li, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490934/
https://www.ncbi.nlm.nih.gov/pubmed/36131263
http://dx.doi.org/10.1186/s12864-022-08891-0
Descripción
Sumario:BACKGROUND: Portal vein ligation (PVL)-induced liver hypertrophy increases future liver remnant (FLR) volume and improves resectability of large hepatic carcinoma. However, the molecular mechanism by which PVL facilitates liver hypertrophy remains poorly understood. METHODS: To gain mechanistic insight, we established a rat PVL model and carried out a comprehensive transcriptome analyses of hepatic lobes preserving portal blood supply at 0, 1, 7, and 14-day after PVL. The differentially expressed (DE) long-non coding RNAs (lncRNAs) and mRNAs were applied to conduct weighted gene co-expression network analysis (WGCNA). LncRNA-mRNA co-expression network was constructed in the most significant module. The modules and genes associated with PVL-induced liver hypertrophy were assessed through quantitative real-time PCR. RESULTS: A total of 4213 DElncRNAs and 6809 DEmRNAs probesets, identified by transcriptome analyses, were used to carry out WGCNA, by which 10 modules were generated. The largest and most significant module (marked in black_M6) was selected for further analysis. Gene Ontology (GO) analysis of the module exhibited several key biological processes associated with liver regeneration such as complement activation, IL-6 production, Wnt signaling pathway, autophagy, etc. Sixteen mRNAs (Notch1, Grb2, IL-4, Cops4, Stxbp1, Khdrbs2, Hdac2, Gnb3, Gng10, Tlr2, Sod1, Gosr2, Rbbp5, Map3k3, Golga2, and Rev3l) and ten lncRNAs (BC092620, AB190508, EF076772, BC088302, BC158675, BC100646, BC089934, L20987, BC091187, and M23890) were identified as hub genes in accordance with gene significance value, module membership value, protein–protein interaction (PPI) and lncRNA-mRNA co-expression network. Furthermore, the overexpression of 3 mRNAs (Notch1, Grb2 and IL-4) and 4 lncRNAs (BC089934, EF076772, BC092620, and BC088302) was validated in hypertrophic liver lobe tissues from PVL rats and patients undergoing hepatectomy after portal vein embolization (PVE). CONCLUSIONS: Microarray and WGCNA analysis revealed that the 3 mRNAs (Notch1, Grb2 and IL-4) and the 4 lncRNAs (BC089934, EF076772, BC092620 and BC088302) may be promising targets for accelerating liver regeneration before extensive hepatectomy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08891-0.