Cargando…
Incorporating kernelized multi-omics data improves the accuracy of genomic prediction
BACKGROUND: Genomic selection (GS) has revolutionized animal and plant breeding after the first implementation via early selection before measuring phenotypes. Besides genome, transcriptome and metabolome information are increasingly considered new sources for GS. Difficulties in building the model...
Autores principales: | Liang, Mang, An, Bingxing, Chang, Tianpeng, Deng, Tianyu, Du, Lili, Li, Keanning, Cao, Sheng, Du, Yueying, Xu, Lingyang, Zhang, Lupei, Gao, Xue, Li, Junya, Gao, Huijiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490992/ https://www.ncbi.nlm.nih.gov/pubmed/36127743 http://dx.doi.org/10.1186/s40104-022-00756-6 |
Ejemplares similares
-
Improving Genomic Prediction with Machine Learning Incorporating TPE for Hyperparameters Optimization
por: Liang, Mang, et al.
Publicado: (2022) -
Transcriptomics and Lipid Metabolomics Analysis of Subcutaneous, Visceral, and Abdominal Adipose Tissues of Beef Cattle
por: Du, Lili, et al.
Publicado: (2022) -
Incorporating genome-wide and transcriptome-wide association studies to identify genetic elements of longissimus dorsi muscle in Huaxi cattle
por: Liang, Mang, et al.
Publicado: (2023) -
Genome-Wide Association Study Based on Random Regression Model Reveals Candidate Genes Associated with Longitudinal Data in Chinese Simmental Beef Cattle
por: Du, Lili, et al.
Publicado: (2021) -
Genome-Wide Association Analysis of Growth Curve Parameters in Chinese Simmental Beef Cattle
por: Duan, Xinghai, et al.
Publicado: (2021)