Cargando…

Long-term variability of impulse oscillometry and spirometry in stable COPD and asthma

BACKGROUND: While optimizing spirometry is a challenge for lung function labs, long-term variability if any between IOS (impulse oscillometry) parameters and spirometry is not clearly known in stable COPD (chronic obstructive pulmonary disease) and chronic asthma. The forced oscillation technique is...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jianhua, Sun, Xingxing, Zhu, Hanqing, Cao, Yuan, Pudasaini, Bigyan, Yang, Wenlan, Liu, Jinming, Guo, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491004/
https://www.ncbi.nlm.nih.gov/pubmed/36131305
http://dx.doi.org/10.1186/s12931-022-02185-5
Descripción
Sumario:BACKGROUND: While optimizing spirometry is a challenge for lung function labs, long-term variability if any between IOS (impulse oscillometry) parameters and spirometry is not clearly known in stable COPD (chronic obstructive pulmonary disease) and chronic asthma. The forced oscillation technique is increasingly employed in routine lung function testing. Our aim in this study was to determine the variability in oscillometric parameters between clinic visits over weeks or months in two patient groups during a period of clinical stability. Moreover, the research assessed relationships between IOS parameters long-term variability and COPD severity. METHODS: We used data from 73 patients with stable COPD and 119 patients with stable asthma at the Shanghai Pulmonary Hospital Affiliated to Tongji University. Patients were included if they had three or more clinic visits where spirometry and IOS were performed during a clinically stable period. Data recorded from the first three visits were used. The standard deviation (SDbv), the coefficient of variation (COV), intraclass correlation coefficient (ICC) and the coefficient of repeatability (COR) were calculated, Wilcoxon Mann–Whitney test was used for data that did not conform to normality of distributions, Kruskal Wallis test was used to compare with multiple groups, post hoc comparison was analyzed by Bonferroni, Spearman correlation coefficients for non-parametric data, the multiple regression analyses to determine the relationship between long-term variability and airflow obstruction. RESULTS: (1) The repeatability of IOS resistance parameters with ICC values > 0.8 was high in COPD and asthma. ICC values of IOS resistance parameters were higher than IOS reactance parameters; (2) the repeatability of spirometry parameters with ICC values < 0.8 was lower than IOS resistance parameters in different GOLD (the Global Initiative for Chronic Obstructive Lung Disease) stages, the higher the stage the worse the repeatability; (3) the severity of airflow obstruction was correlated with long-term variability of R5 (R at 5 Hz) (P < 0.05) in GOLD4, not with long-term variability of R20 (R at 20 Hz) (P > 0.05) and R5-R20 (P > 0.05). CONCLUSION: IOS resistance parameters have good long-term repeatability in asthma and COPD. Additionally, repeatability of spirometry parameters is lower than IOS resistance parameters in different GOLD stages.