Cargando…

Multiple Pickering emulsions stabilized by surface-segregated micelles with adaptive wettability

Surface-segregated micelles (SSMs) with adaptive wettability have considerable potential for application in Pickering emulsions and bioanalytical technology. In this study, spherical SSMs were prepared via polymerization-induced self-assembly co-mediated with a binary mixture of macromolecular chain...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Tongtong, Jiang, Hang, Hong, Liangzhi, Ngai, To
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491070/
https://www.ncbi.nlm.nih.gov/pubmed/36320716
http://dx.doi.org/10.1039/d2sc03783a
Descripción
Sumario:Surface-segregated micelles (SSMs) with adaptive wettability have considerable potential for application in Pickering emulsions and bioanalytical technology. In this study, spherical SSMs were prepared via polymerization-induced self-assembly co-mediated with a binary mixture of macromolecular chain transfer agents: pH-responsive poly(2-(dimethylamino) ethyl methacrylate) and hydrophobic polydimethylsiloxane. Using these SSMs as the sole emulsifier, we adjusted the pH to successfully produce both water-in-oil-in-water (W/O/W) and oil-in-water-in-oil (O/W/O) multiple emulsions through a single-step emulsification process. Moreover, we demonstrated that multiple emulsion systems with adjustable pH are suitable for the development of an efficient and recyclable interfacial catalytic system. Multiple emulsion microreactors increase the area of the oil–water interface and are therefore more efficient than the commonly used O/W and W/O emulsion systems.