Cargando…
A lexicon-based approach to examine depression detection in social media: the case of Twitter and university community
Globally, the number of people who suffer from depression is consistently increasing. Because both detecting and addressing the early stage of depression is one of the strongest factors for effective treatment, a number of scholars have attempted to examine how to detect and address early-stage depr...
Autores principales: | Cha, Junyeop, Kim, Seoyun, Park, Eunil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Palgrave Macmillan UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491270/ https://www.ncbi.nlm.nih.gov/pubmed/36159708 http://dx.doi.org/10.1057/s41599-022-01313-2 |
Ejemplares similares
-
Lexicon-based sentiment analysis to detect opinions and attitude towards COVID-19 vaccines on Twitter in Italy
por: Catelli, Rosario, et al.
Publicado: (2023) -
Sentiment analysis using Twitter data: a comparative application of lexicon- and machine-learning-based approach
por: Qi, Yuxing, et al.
Publicado: (2023) -
Cancer patients on Twitter: a novel patient community on social media
por: Sugawara, Yuya, et al.
Publicado: (2012) -
Machine Learning Technique to Detect and Classify Mental Illness on Social Media Using Lexicon-Based Recommender System
por: Sumathy, B., et al.
Publicado: (2022) -
A deep learning model for detecting mental illness from user content on social media
por: Kim, Jina, et al.
Publicado: (2020)