Cargando…
Learning the Effect of Registration Hyperparameters with HyperMorph
We introduce HyperMorph, a framework that facilitates efficient hyperparameter tuning in learning-based deformable image registration. Classical registration algorithms perform an iterative pair-wise optimization to compute a deformation field that aligns two images. Recent learning-based approaches...
Autores principales: | Hoopes, Andrew, Hoffmann, Malte, Greve, Douglas N., Fischl, Bruce, Guttag, John, Dalca, Adrian V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491317/ https://www.ncbi.nlm.nih.gov/pubmed/36147449 |
Ejemplares similares
-
SynthMorph: Learning Contrast-Invariant Registration Without Acquired Images
por: Hoffmann, Malte, et al.
Publicado: (2022) -
Cortical surface registration using unsupervised learning
por: Cheng, Jieyu, et al.
Publicado: (2020) -
A deep learning toolbox for automatic segmentation of subcortical limbic structures from MRI images
por: Greve, Douglas N., et al.
Publicado: (2021) -
SynthStrip: skull-stripping for any brain image
por: Hoopes, Andrew, et al.
Publicado: (2022) -
Joint cortical registration of geometry and function using semi-supervised learning
por: Li, Jian, et al.
Publicado: (2023)