Cargando…
Metabolomics Combined with Network Pharmacology-Based Strategy to Reveal the Underlying Mechanism of Zhenhuang Submicron Emulsion in Treating Oropharyngeal Mucositis Complications of Radiation Therapy for Head and Neck Cancer
INTRODUCTION: Head and neck tumors account for more than 6% of all cancers. The primary treatment for tumors of the head and neck is radiation therapy, which can induce oropharyngeal mucositis as a side effect. At present, there is no widely available therapeutic for the treatment of oropharyngeal m...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491332/ https://www.ncbi.nlm.nih.gov/pubmed/36158237 http://dx.doi.org/10.2147/DDDT.S376984 |
_version_ | 1784793259291181056 |
---|---|
author | Chen, Wei Li, Chunyu Jin, Dujia Shi, Yafei Zhang, Mingyu Bo, Mingming Qian, Di Wang, Mengyang Li, Guohui |
author_facet | Chen, Wei Li, Chunyu Jin, Dujia Shi, Yafei Zhang, Mingyu Bo, Mingming Qian, Di Wang, Mengyang Li, Guohui |
author_sort | Chen, Wei |
collection | PubMed |
description | INTRODUCTION: Head and neck tumors account for more than 6% of all cancers. The primary treatment for tumors of the head and neck is radiation therapy, which can induce oropharyngeal mucositis as a side effect. At present, there is no widely available therapeutic for the treatment of oropharyngeal mucositis in clinical practice. Based on the traditional prescription Liushen Wan, the pathogenesis and pathology, we developed a new Chinese medicine prescription and made Zhenhuang submicron emulsion (ZHSE) spray, which has an efficacious therapeutic effect for oropharyngeal mucositis. However, its mechanism is unclear. METHODS: This research explored the mechanism behind the modulatory effects of ZHSE by a strategy of metabolomics and network pharmacology. Multivariate data analyses, including unsupervised principal component analysis (PCA) and supervised orthogonal partial least squares discriminant analysis (OPLS-DA), were performed. Potential biomarkers were identified depending on the mass-charge ratio of the selected compound. Statistical and pathway enrichment analysis was performed in the KEGG pathway database. Network pharmacology combining metabolomic analyses was conducted to illustrate the key targets and pathways. RESULTS: Critical metabolic pathways were investigated, 56f biomarkers were enriched and key metabolites such as linoleic acid, 9,10-epoxyoctadecenoic acid, acetoacetic acid and citric acid were identified. A complex network of “compound-target-potential metabolite” interactions was drawn to illuminate the regulation of chemical constituents on key metabolites. These findings manifest that ZHSE regulates endogenous metabolite disorders during the treatment of oropharyngeal mucositis by various constituents, interacting with multiple targets associated with inflammation and pain. CONCLUSION: In this work, we determined several critical biomarkers and metabolic pathways and identified the possible regulatory mechanism by which ZHSE functions in the treatment of oropharyngeal mucositis. This study provides a new perspective on integrating metabolomics and network pharmacology for exploring improved therapy for head and neck tumors based on the traditional classic prescription of LSW. |
format | Online Article Text |
id | pubmed-9491332 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-94913322022-09-22 Metabolomics Combined with Network Pharmacology-Based Strategy to Reveal the Underlying Mechanism of Zhenhuang Submicron Emulsion in Treating Oropharyngeal Mucositis Complications of Radiation Therapy for Head and Neck Cancer Chen, Wei Li, Chunyu Jin, Dujia Shi, Yafei Zhang, Mingyu Bo, Mingming Qian, Di Wang, Mengyang Li, Guohui Drug Des Devel Ther Original Research INTRODUCTION: Head and neck tumors account for more than 6% of all cancers. The primary treatment for tumors of the head and neck is radiation therapy, which can induce oropharyngeal mucositis as a side effect. At present, there is no widely available therapeutic for the treatment of oropharyngeal mucositis in clinical practice. Based on the traditional prescription Liushen Wan, the pathogenesis and pathology, we developed a new Chinese medicine prescription and made Zhenhuang submicron emulsion (ZHSE) spray, which has an efficacious therapeutic effect for oropharyngeal mucositis. However, its mechanism is unclear. METHODS: This research explored the mechanism behind the modulatory effects of ZHSE by a strategy of metabolomics and network pharmacology. Multivariate data analyses, including unsupervised principal component analysis (PCA) and supervised orthogonal partial least squares discriminant analysis (OPLS-DA), were performed. Potential biomarkers were identified depending on the mass-charge ratio of the selected compound. Statistical and pathway enrichment analysis was performed in the KEGG pathway database. Network pharmacology combining metabolomic analyses was conducted to illustrate the key targets and pathways. RESULTS: Critical metabolic pathways were investigated, 56f biomarkers were enriched and key metabolites such as linoleic acid, 9,10-epoxyoctadecenoic acid, acetoacetic acid and citric acid were identified. A complex network of “compound-target-potential metabolite” interactions was drawn to illuminate the regulation of chemical constituents on key metabolites. These findings manifest that ZHSE regulates endogenous metabolite disorders during the treatment of oropharyngeal mucositis by various constituents, interacting with multiple targets associated with inflammation and pain. CONCLUSION: In this work, we determined several critical biomarkers and metabolic pathways and identified the possible regulatory mechanism by which ZHSE functions in the treatment of oropharyngeal mucositis. This study provides a new perspective on integrating metabolomics and network pharmacology for exploring improved therapy for head and neck tumors based on the traditional classic prescription of LSW. Dove 2022-09-17 /pmc/articles/PMC9491332/ /pubmed/36158237 http://dx.doi.org/10.2147/DDDT.S376984 Text en © 2022 Chen et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Chen, Wei Li, Chunyu Jin, Dujia Shi, Yafei Zhang, Mingyu Bo, Mingming Qian, Di Wang, Mengyang Li, Guohui Metabolomics Combined with Network Pharmacology-Based Strategy to Reveal the Underlying Mechanism of Zhenhuang Submicron Emulsion in Treating Oropharyngeal Mucositis Complications of Radiation Therapy for Head and Neck Cancer |
title | Metabolomics Combined with Network Pharmacology-Based Strategy to Reveal the Underlying Mechanism of Zhenhuang Submicron Emulsion in Treating Oropharyngeal Mucositis Complications of Radiation Therapy for Head and Neck Cancer |
title_full | Metabolomics Combined with Network Pharmacology-Based Strategy to Reveal the Underlying Mechanism of Zhenhuang Submicron Emulsion in Treating Oropharyngeal Mucositis Complications of Radiation Therapy for Head and Neck Cancer |
title_fullStr | Metabolomics Combined with Network Pharmacology-Based Strategy to Reveal the Underlying Mechanism of Zhenhuang Submicron Emulsion in Treating Oropharyngeal Mucositis Complications of Radiation Therapy for Head and Neck Cancer |
title_full_unstemmed | Metabolomics Combined with Network Pharmacology-Based Strategy to Reveal the Underlying Mechanism of Zhenhuang Submicron Emulsion in Treating Oropharyngeal Mucositis Complications of Radiation Therapy for Head and Neck Cancer |
title_short | Metabolomics Combined with Network Pharmacology-Based Strategy to Reveal the Underlying Mechanism of Zhenhuang Submicron Emulsion in Treating Oropharyngeal Mucositis Complications of Radiation Therapy for Head and Neck Cancer |
title_sort | metabolomics combined with network pharmacology-based strategy to reveal the underlying mechanism of zhenhuang submicron emulsion in treating oropharyngeal mucositis complications of radiation therapy for head and neck cancer |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491332/ https://www.ncbi.nlm.nih.gov/pubmed/36158237 http://dx.doi.org/10.2147/DDDT.S376984 |
work_keys_str_mv | AT chenwei metabolomicscombinedwithnetworkpharmacologybasedstrategytorevealtheunderlyingmechanismofzhenhuangsubmicronemulsionintreatingoropharyngealmucositiscomplicationsofradiationtherapyforheadandneckcancer AT lichunyu metabolomicscombinedwithnetworkpharmacologybasedstrategytorevealtheunderlyingmechanismofzhenhuangsubmicronemulsionintreatingoropharyngealmucositiscomplicationsofradiationtherapyforheadandneckcancer AT jindujia metabolomicscombinedwithnetworkpharmacologybasedstrategytorevealtheunderlyingmechanismofzhenhuangsubmicronemulsionintreatingoropharyngealmucositiscomplicationsofradiationtherapyforheadandneckcancer AT shiyafei metabolomicscombinedwithnetworkpharmacologybasedstrategytorevealtheunderlyingmechanismofzhenhuangsubmicronemulsionintreatingoropharyngealmucositiscomplicationsofradiationtherapyforheadandneckcancer AT zhangmingyu metabolomicscombinedwithnetworkpharmacologybasedstrategytorevealtheunderlyingmechanismofzhenhuangsubmicronemulsionintreatingoropharyngealmucositiscomplicationsofradiationtherapyforheadandneckcancer AT bomingming metabolomicscombinedwithnetworkpharmacologybasedstrategytorevealtheunderlyingmechanismofzhenhuangsubmicronemulsionintreatingoropharyngealmucositiscomplicationsofradiationtherapyforheadandneckcancer AT qiandi metabolomicscombinedwithnetworkpharmacologybasedstrategytorevealtheunderlyingmechanismofzhenhuangsubmicronemulsionintreatingoropharyngealmucositiscomplicationsofradiationtherapyforheadandneckcancer AT wangmengyang metabolomicscombinedwithnetworkpharmacologybasedstrategytorevealtheunderlyingmechanismofzhenhuangsubmicronemulsionintreatingoropharyngealmucositiscomplicationsofradiationtherapyforheadandneckcancer AT liguohui metabolomicscombinedwithnetworkpharmacologybasedstrategytorevealtheunderlyingmechanismofzhenhuangsubmicronemulsionintreatingoropharyngealmucositiscomplicationsofradiationtherapyforheadandneckcancer |