Cargando…
Integrative omics approaches for biosynthetic pathway discovery in plants
Covering: up to 2022 With the emergence of large amounts of omics data, computational approaches for the identification of plant natural product biosynthetic pathways and their genetic regulation have become increasingly important. While genomes provide clues regarding functional associations betwee...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491492/ https://www.ncbi.nlm.nih.gov/pubmed/35997060 http://dx.doi.org/10.1039/d2np00032f |
_version_ | 1784793290819764224 |
---|---|
author | Singh, Kumar Saurabh van der Hooft, Justin J. J. van Wees, Saskia C. M. Medema, Marnix H. |
author_facet | Singh, Kumar Saurabh van der Hooft, Justin J. J. van Wees, Saskia C. M. Medema, Marnix H. |
author_sort | Singh, Kumar Saurabh |
collection | PubMed |
description | Covering: up to 2022 With the emergence of large amounts of omics data, computational approaches for the identification of plant natural product biosynthetic pathways and their genetic regulation have become increasingly important. While genomes provide clues regarding functional associations between genes based on gene clustering, metabolome mining provides a foundational technology to chart natural product structural diversity in plants, and transcriptomics has been successfully used to identify new members of their biosynthetic pathways based on coexpression. Thus far, most approaches utilizing transcriptomics and metabolomics have been targeted towards specific pathways and use one type of omics data at a time. Recent technological advances now provide new opportunities for integration of multiple omics types and untargeted pathway discovery. Here, we review advances in plant biosynthetic pathway discovery using genomics, transcriptomics, and metabolomics, as well as recent efforts towards omics integration. We highlight how transcriptomics and metabolomics provide complementary information to link genes to metabolites, by associating temporal and spatial gene expression levels with metabolite abundance levels across samples, and by matching mass-spectral features to enzyme families. Furthermore, we suggest that elucidation of gene regulatory networks using time-series data may prove useful for efforts to unwire the complexities of biosynthetic pathway components based on regulatory interactions and events. |
format | Online Article Text |
id | pubmed-9491492 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-94914922022-10-31 Integrative omics approaches for biosynthetic pathway discovery in plants Singh, Kumar Saurabh van der Hooft, Justin J. J. van Wees, Saskia C. M. Medema, Marnix H. Nat Prod Rep Chemistry Covering: up to 2022 With the emergence of large amounts of omics data, computational approaches for the identification of plant natural product biosynthetic pathways and their genetic regulation have become increasingly important. While genomes provide clues regarding functional associations between genes based on gene clustering, metabolome mining provides a foundational technology to chart natural product structural diversity in plants, and transcriptomics has been successfully used to identify new members of their biosynthetic pathways based on coexpression. Thus far, most approaches utilizing transcriptomics and metabolomics have been targeted towards specific pathways and use one type of omics data at a time. Recent technological advances now provide new opportunities for integration of multiple omics types and untargeted pathway discovery. Here, we review advances in plant biosynthetic pathway discovery using genomics, transcriptomics, and metabolomics, as well as recent efforts towards omics integration. We highlight how transcriptomics and metabolomics provide complementary information to link genes to metabolites, by associating temporal and spatial gene expression levels with metabolite abundance levels across samples, and by matching mass-spectral features to enzyme families. Furthermore, we suggest that elucidation of gene regulatory networks using time-series data may prove useful for efforts to unwire the complexities of biosynthetic pathway components based on regulatory interactions and events. The Royal Society of Chemistry 2022-08-23 /pmc/articles/PMC9491492/ /pubmed/35997060 http://dx.doi.org/10.1039/d2np00032f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Singh, Kumar Saurabh van der Hooft, Justin J. J. van Wees, Saskia C. M. Medema, Marnix H. Integrative omics approaches for biosynthetic pathway discovery in plants |
title | Integrative omics approaches for biosynthetic pathway discovery in plants |
title_full | Integrative omics approaches for biosynthetic pathway discovery in plants |
title_fullStr | Integrative omics approaches for biosynthetic pathway discovery in plants |
title_full_unstemmed | Integrative omics approaches for biosynthetic pathway discovery in plants |
title_short | Integrative omics approaches for biosynthetic pathway discovery in plants |
title_sort | integrative omics approaches for biosynthetic pathway discovery in plants |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491492/ https://www.ncbi.nlm.nih.gov/pubmed/35997060 http://dx.doi.org/10.1039/d2np00032f |
work_keys_str_mv | AT singhkumarsaurabh integrativeomicsapproachesforbiosyntheticpathwaydiscoveryinplants AT vanderhooftjustinjj integrativeomicsapproachesforbiosyntheticpathwaydiscoveryinplants AT vanweessaskiacm integrativeomicsapproachesforbiosyntheticpathwaydiscoveryinplants AT medemamarnixh integrativeomicsapproachesforbiosyntheticpathwaydiscoveryinplants |