Cargando…
Long-term performance assessment of fully automatic biomedical glottis segmentation at the point of care
Deep Learning has a large impact on medical image analysis and lately has been adopted for clinical use at the point of care. However, there is only a small number of reports of long-term studies that show the performance of deep neural networks (DNNs) in such an environment. In this study, we measu...
Autores principales: | Groh, René, Dürr, Stephan, Schützenberger, Anne, Semmler, Marion, Kist, Andreas M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491538/ https://www.ncbi.nlm.nih.gov/pubmed/36129922 http://dx.doi.org/10.1371/journal.pone.0266989 |
Ejemplares similares
-
A single latent channel is sufficient for biomedical glottis segmentation
por: Kist, Andreas M., et al.
Publicado: (2022) -
BAGLS, a multihospital Benchmark for Automatic Glottis Segmentation
por: Gómez, Pablo, et al.
Publicado: (2020) -
Re-Training of Convolutional Neural Networks for Glottis Segmentation in Endoscopic High-Speed Videos
por: Döllinger, Michael, et al.
Publicado: (2022) -
Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network
por: Fehling, Mona Kirstin, et al.
Publicado: (2020) -
OpenHSV: an open platform for laryngeal high-speed videoendoscopy
por: Kist, Andreas M., et al.
Publicado: (2021)