Cargando…
Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data
This work introduces a comprehensive approach to assess the sensitivity of model outputs to changes in parameter values, constrained by the combination of prior beliefs and data. This approach identifies stiff parameter combinations strongly affecting the quality of the model-data fit while simultan...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491719/ https://www.ncbi.nlm.nih.gov/pubmed/36129974 http://dx.doi.org/10.1126/sciadv.abm5952 |
_version_ | 1784793333702328320 |
---|---|
author | Monsalve-Bravo, Gloria M. Lawson, Brodie A. J. Drovandi, Christopher Burrage, Kevin Brown, Kevin S. Baker, Christopher M. Vollert, Sarah A. Mengersen, Kerrie McDonald-Madden, Eve Adams, Matthew P. |
author_facet | Monsalve-Bravo, Gloria M. Lawson, Brodie A. J. Drovandi, Christopher Burrage, Kevin Brown, Kevin S. Baker, Christopher M. Vollert, Sarah A. Mengersen, Kerrie McDonald-Madden, Eve Adams, Matthew P. |
author_sort | Monsalve-Bravo, Gloria M. |
collection | PubMed |
description | This work introduces a comprehensive approach to assess the sensitivity of model outputs to changes in parameter values, constrained by the combination of prior beliefs and data. This approach identifies stiff parameter combinations strongly affecting the quality of the model-data fit while simultaneously revealing which of these key parameter combinations are informed primarily by the data or are also substantively influenced by the priors. We focus on the very common context in complex systems where the amount and quality of data are low compared to the number of model parameters to be collectively estimated, and showcase the benefits of this technique for applications in biochemistry, ecology, and cardiac electrophysiology. We also show how stiff parameter combinations, once identified, uncover controlling mechanisms underlying the system being modeled and inform which of the model parameters need to be prioritized in future experiments for improved parameter inference from collective model-data fitting. |
format | Online Article Text |
id | pubmed-9491719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-94917192022-10-03 Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data Monsalve-Bravo, Gloria M. Lawson, Brodie A. J. Drovandi, Christopher Burrage, Kevin Brown, Kevin S. Baker, Christopher M. Vollert, Sarah A. Mengersen, Kerrie McDonald-Madden, Eve Adams, Matthew P. Sci Adv Social and Interdisciplinary Sciences This work introduces a comprehensive approach to assess the sensitivity of model outputs to changes in parameter values, constrained by the combination of prior beliefs and data. This approach identifies stiff parameter combinations strongly affecting the quality of the model-data fit while simultaneously revealing which of these key parameter combinations are informed primarily by the data or are also substantively influenced by the priors. We focus on the very common context in complex systems where the amount and quality of data are low compared to the number of model parameters to be collectively estimated, and showcase the benefits of this technique for applications in biochemistry, ecology, and cardiac electrophysiology. We also show how stiff parameter combinations, once identified, uncover controlling mechanisms underlying the system being modeled and inform which of the model parameters need to be prioritized in future experiments for improved parameter inference from collective model-data fitting. American Association for the Advancement of Science 2022-09-21 /pmc/articles/PMC9491719/ /pubmed/36129974 http://dx.doi.org/10.1126/sciadv.abm5952 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Social and Interdisciplinary Sciences Monsalve-Bravo, Gloria M. Lawson, Brodie A. J. Drovandi, Christopher Burrage, Kevin Brown, Kevin S. Baker, Christopher M. Vollert, Sarah A. Mengersen, Kerrie McDonald-Madden, Eve Adams, Matthew P. Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data |
title | Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data |
title_full | Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data |
title_fullStr | Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data |
title_full_unstemmed | Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data |
title_short | Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data |
title_sort | analysis of sloppiness in model simulations: unveiling parameter uncertainty when mathematical models are fitted to data |
topic | Social and Interdisciplinary Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491719/ https://www.ncbi.nlm.nih.gov/pubmed/36129974 http://dx.doi.org/10.1126/sciadv.abm5952 |
work_keys_str_mv | AT monsalvebravogloriam analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata AT lawsonbrodieaj analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata AT drovandichristopher analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata AT burragekevin analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata AT brownkevins analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata AT bakerchristopherm analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata AT vollertsaraha analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata AT mengersenkerrie analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata AT mcdonaldmaddeneve analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata AT adamsmatthewp analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata |