Cargando…

Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data

This work introduces a comprehensive approach to assess the sensitivity of model outputs to changes in parameter values, constrained by the combination of prior beliefs and data. This approach identifies stiff parameter combinations strongly affecting the quality of the model-data fit while simultan...

Descripción completa

Detalles Bibliográficos
Autores principales: Monsalve-Bravo, Gloria M., Lawson, Brodie A. J., Drovandi, Christopher, Burrage, Kevin, Brown, Kevin S., Baker, Christopher M., Vollert, Sarah A., Mengersen, Kerrie, McDonald-Madden, Eve, Adams, Matthew P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491719/
https://www.ncbi.nlm.nih.gov/pubmed/36129974
http://dx.doi.org/10.1126/sciadv.abm5952
_version_ 1784793333702328320
author Monsalve-Bravo, Gloria M.
Lawson, Brodie A. J.
Drovandi, Christopher
Burrage, Kevin
Brown, Kevin S.
Baker, Christopher M.
Vollert, Sarah A.
Mengersen, Kerrie
McDonald-Madden, Eve
Adams, Matthew P.
author_facet Monsalve-Bravo, Gloria M.
Lawson, Brodie A. J.
Drovandi, Christopher
Burrage, Kevin
Brown, Kevin S.
Baker, Christopher M.
Vollert, Sarah A.
Mengersen, Kerrie
McDonald-Madden, Eve
Adams, Matthew P.
author_sort Monsalve-Bravo, Gloria M.
collection PubMed
description This work introduces a comprehensive approach to assess the sensitivity of model outputs to changes in parameter values, constrained by the combination of prior beliefs and data. This approach identifies stiff parameter combinations strongly affecting the quality of the model-data fit while simultaneously revealing which of these key parameter combinations are informed primarily by the data or are also substantively influenced by the priors. We focus on the very common context in complex systems where the amount and quality of data are low compared to the number of model parameters to be collectively estimated, and showcase the benefits of this technique for applications in biochemistry, ecology, and cardiac electrophysiology. We also show how stiff parameter combinations, once identified, uncover controlling mechanisms underlying the system being modeled and inform which of the model parameters need to be prioritized in future experiments for improved parameter inference from collective model-data fitting.
format Online
Article
Text
id pubmed-9491719
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-94917192022-10-03 Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data Monsalve-Bravo, Gloria M. Lawson, Brodie A. J. Drovandi, Christopher Burrage, Kevin Brown, Kevin S. Baker, Christopher M. Vollert, Sarah A. Mengersen, Kerrie McDonald-Madden, Eve Adams, Matthew P. Sci Adv Social and Interdisciplinary Sciences This work introduces a comprehensive approach to assess the sensitivity of model outputs to changes in parameter values, constrained by the combination of prior beliefs and data. This approach identifies stiff parameter combinations strongly affecting the quality of the model-data fit while simultaneously revealing which of these key parameter combinations are informed primarily by the data or are also substantively influenced by the priors. We focus on the very common context in complex systems where the amount and quality of data are low compared to the number of model parameters to be collectively estimated, and showcase the benefits of this technique for applications in biochemistry, ecology, and cardiac electrophysiology. We also show how stiff parameter combinations, once identified, uncover controlling mechanisms underlying the system being modeled and inform which of the model parameters need to be prioritized in future experiments for improved parameter inference from collective model-data fitting. American Association for the Advancement of Science 2022-09-21 /pmc/articles/PMC9491719/ /pubmed/36129974 http://dx.doi.org/10.1126/sciadv.abm5952 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Social and Interdisciplinary Sciences
Monsalve-Bravo, Gloria M.
Lawson, Brodie A. J.
Drovandi, Christopher
Burrage, Kevin
Brown, Kevin S.
Baker, Christopher M.
Vollert, Sarah A.
Mengersen, Kerrie
McDonald-Madden, Eve
Adams, Matthew P.
Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data
title Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data
title_full Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data
title_fullStr Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data
title_full_unstemmed Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data
title_short Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data
title_sort analysis of sloppiness in model simulations: unveiling parameter uncertainty when mathematical models are fitted to data
topic Social and Interdisciplinary Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491719/
https://www.ncbi.nlm.nih.gov/pubmed/36129974
http://dx.doi.org/10.1126/sciadv.abm5952
work_keys_str_mv AT monsalvebravogloriam analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata
AT lawsonbrodieaj analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata
AT drovandichristopher analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata
AT burragekevin analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata
AT brownkevins analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata
AT bakerchristopherm analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata
AT vollertsaraha analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata
AT mengersenkerrie analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata
AT mcdonaldmaddeneve analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata
AT adamsmatthewp analysisofsloppinessinmodelsimulationsunveilingparameteruncertaintywhenmathematicalmodelsarefittedtodata