Cargando…
Analysis of sloppiness in model simulations: Unveiling parameter uncertainty when mathematical models are fitted to data
This work introduces a comprehensive approach to assess the sensitivity of model outputs to changes in parameter values, constrained by the combination of prior beliefs and data. This approach identifies stiff parameter combinations strongly affecting the quality of the model-data fit while simultan...
Autores principales: | Monsalve-Bravo, Gloria M., Lawson, Brodie A. J., Drovandi, Christopher, Burrage, Kevin, Brown, Kevin S., Baker, Christopher M., Vollert, Sarah A., Mengersen, Kerrie, McDonald-Madden, Eve, Adams, Matthew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491719/ https://www.ncbi.nlm.nih.gov/pubmed/36129974 http://dx.doi.org/10.1126/sciadv.abm5952 |
Ejemplares similares
-
Unlocking data sets by calibrating populations of models to data density: A study in atrial electrophysiology
por: Lawson, Brodie A. J., et al.
Publicado: (2018) -
Universally Sloppy Parameter Sensitivities in Systems Biology Models
por: Gutenkunst, Ryan N, et al.
Publicado: (2007) -
Slow Recovery of Excitability Increases Ventricular Fibrillation Risk as Identified by Emulation
por: Lawson, Brodie A., et al.
Publicado: (2018) -
Estimating a novel stochastic model for within-field disease dynamics of banana bunchy top virus via approximate Bayesian computation
por: Varghese, Abhishek, et al.
Publicado: (2020) -
A sloppy checkpoint
por: Leslie, Mitch
Publicado: (2007)