Cargando…

Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records

PURPOSE: To assess, validate and compare the predictive performance of models for in-hospital mortality of COVID-19 patients admitted to the intensive care unit (ICU) over two different waves of infections. Our models were built with high-granular Electronic Health Records (EHR) data versus less-gra...

Descripción completa

Detalles Bibliográficos
Autores principales: Vagliano, Iacopo, Schut, Martijn C., Abu-Hanna, Ameen, Dongelmans, Dave A., de Lange, Dylan W., Gommers, Diederik, Cremer, Olaf L., Bosman, Rob J., Rigter, Sander, Wils, Evert-Jan, Frenzel, Tim, de Jong, Remko, Peters, Marco A.A., Kamps, Marlijn J.A., Ramnarain, Dharmanand, Nowitzky, Ralph, Nooteboom, Fleur G.C.A., de Ruijter, Wouter, Urlings-Strop, Louise C., Smit, Ellen G.M., Mehagnoul-Schipper, D. Jannet, Dormans, Tom, de Jager, Cornelis P.C., Hendriks, Stefaan H.A., Achterberg, Sefanja, Oostdijk, Evelien, Reidinga, Auke C., Festen-Spanjer, Barbara, Brunnekreef, Gert B., Cornet, Alexander D., van den Tempel, Walter, Boelens, Age D., Koetsier, Peter, Lens, Judith, Faber, Harald J., Karakus, A., Entjes, Robert, de Jong, Paul, Rettig, Thijs C.D., Reuland, M.C., Arbous, Sesmu, Fleuren, Lucas M., Dam, Tariq A., Thoral, Patrick J., Lalisang, Robbert C.A., Tonutti, Michele, de Bruin, Daan P., Elbers, Paul W.G., de Keizer, Nicolette F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Author(s). Published by Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492397/
https://www.ncbi.nlm.nih.gov/pubmed/36162166
http://dx.doi.org/10.1016/j.ijmedinf.2022.104863
_version_ 1784793471443271680
author Vagliano, Iacopo
Schut, Martijn C.
Abu-Hanna, Ameen
Dongelmans, Dave A.
de Lange, Dylan W.
Gommers, Diederik
Cremer, Olaf L.
Bosman, Rob J.
Rigter, Sander
Wils, Evert-Jan
Frenzel, Tim
de Jong, Remko
Peters, Marco A.A.
Kamps, Marlijn J.A.
Ramnarain, Dharmanand
Nowitzky, Ralph
Nooteboom, Fleur G.C.A.
de Ruijter, Wouter
Urlings-Strop, Louise C.
Smit, Ellen G.M.
Mehagnoul-Schipper, D. Jannet
Dormans, Tom
de Jager, Cornelis P.C.
Hendriks, Stefaan H.A.
Achterberg, Sefanja
Oostdijk, Evelien
Reidinga, Auke C.
Festen-Spanjer, Barbara
Brunnekreef, Gert B.
Cornet, Alexander D.
van den Tempel, Walter
Boelens, Age D.
Koetsier, Peter
Lens, Judith
Faber, Harald J.
Karakus, A.
Entjes, Robert
de Jong, Paul
Rettig, Thijs C.D.
Reuland, M.C.
Arbous, Sesmu
Fleuren, Lucas M.
Dam, Tariq A.
Thoral, Patrick J.
Lalisang, Robbert C.A.
Tonutti, Michele
de Bruin, Daan P.
Elbers, Paul W.G.
de Keizer, Nicolette F.
author_facet Vagliano, Iacopo
Schut, Martijn C.
Abu-Hanna, Ameen
Dongelmans, Dave A.
de Lange, Dylan W.
Gommers, Diederik
Cremer, Olaf L.
Bosman, Rob J.
Rigter, Sander
Wils, Evert-Jan
Frenzel, Tim
de Jong, Remko
Peters, Marco A.A.
Kamps, Marlijn J.A.
Ramnarain, Dharmanand
Nowitzky, Ralph
Nooteboom, Fleur G.C.A.
de Ruijter, Wouter
Urlings-Strop, Louise C.
Smit, Ellen G.M.
Mehagnoul-Schipper, D. Jannet
Dormans, Tom
de Jager, Cornelis P.C.
Hendriks, Stefaan H.A.
Achterberg, Sefanja
Oostdijk, Evelien
Reidinga, Auke C.
Festen-Spanjer, Barbara
Brunnekreef, Gert B.
Cornet, Alexander D.
van den Tempel, Walter
Boelens, Age D.
Koetsier, Peter
Lens, Judith
Faber, Harald J.
Karakus, A.
Entjes, Robert
de Jong, Paul
Rettig, Thijs C.D.
Reuland, M.C.
Arbous, Sesmu
Fleuren, Lucas M.
Dam, Tariq A.
Thoral, Patrick J.
Lalisang, Robbert C.A.
Tonutti, Michele
de Bruin, Daan P.
Elbers, Paul W.G.
de Keizer, Nicolette F.
author_sort Vagliano, Iacopo
collection PubMed
description PURPOSE: To assess, validate and compare the predictive performance of models for in-hospital mortality of COVID-19 patients admitted to the intensive care unit (ICU) over two different waves of infections. Our models were built with high-granular Electronic Health Records (EHR) data versus less-granular registry data. METHODS: Observational study of all COVID-19 patients admitted to 19 Dutch ICUs participating in both the national quality registry National Intensive Care Evaluation (NICE) and the EHR-based Dutch Data Warehouse (hereafter EHR). Multiple models were developed on data from the first 24 h of ICU admissions from February to June 2020 (first COVID-19 wave) and validated on prospective patients admitted to the same ICUs between July and December 2020 (second COVID-19 wave). We assessed model discrimination, calibration, and the degree of relatedness between development and validation population. Coefficients were used to identify relevant risk factors. RESULTS: A total of 1533 patients from the EHR and 1563 from the registry were included. With high granular EHR data, the average AUROC was 0.69 (standard deviation of 0.05) for the internal validation, and the AUROC was 0.75 for the temporal validation. The registry model achieved an average AUROC of 0.76 (standard deviation of 0.05) in the internal validation and 0.77 in the temporal validation. In the EHR data, age, and respiratory-system related variables were the most important risk factors identified. In the NICE registry data, age and chronic respiratory insufficiency were the most important risk factors. CONCLUSION: In our study, prognostic models built on less-granular but readily-available registry data had similar performance to models built on high-granular EHR data and showed similar transportability to a prospective COVID-19 population. Future research is needed to verify whether this finding can be confirmed for upcoming waves.
format Online
Article
Text
id pubmed-9492397
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Author(s). Published by Elsevier B.V.
record_format MEDLINE/PubMed
spelling pubmed-94923972022-09-22 Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records Vagliano, Iacopo Schut, Martijn C. Abu-Hanna, Ameen Dongelmans, Dave A. de Lange, Dylan W. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim de Jong, Remko Peters, Marco A.A. Kamps, Marlijn J.A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G.C.A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G.M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P.C. Hendriks, Stefaan H.A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C.D. Reuland, M.C. Arbous, Sesmu Fleuren, Lucas M. Dam, Tariq A. Thoral, Patrick J. Lalisang, Robbert C.A. Tonutti, Michele de Bruin, Daan P. Elbers, Paul W.G. de Keizer, Nicolette F. Int J Med Inform Article PURPOSE: To assess, validate and compare the predictive performance of models for in-hospital mortality of COVID-19 patients admitted to the intensive care unit (ICU) over two different waves of infections. Our models were built with high-granular Electronic Health Records (EHR) data versus less-granular registry data. METHODS: Observational study of all COVID-19 patients admitted to 19 Dutch ICUs participating in both the national quality registry National Intensive Care Evaluation (NICE) and the EHR-based Dutch Data Warehouse (hereafter EHR). Multiple models were developed on data from the first 24 h of ICU admissions from February to June 2020 (first COVID-19 wave) and validated on prospective patients admitted to the same ICUs between July and December 2020 (second COVID-19 wave). We assessed model discrimination, calibration, and the degree of relatedness between development and validation population. Coefficients were used to identify relevant risk factors. RESULTS: A total of 1533 patients from the EHR and 1563 from the registry were included. With high granular EHR data, the average AUROC was 0.69 (standard deviation of 0.05) for the internal validation, and the AUROC was 0.75 for the temporal validation. The registry model achieved an average AUROC of 0.76 (standard deviation of 0.05) in the internal validation and 0.77 in the temporal validation. In the EHR data, age, and respiratory-system related variables were the most important risk factors identified. In the NICE registry data, age and chronic respiratory insufficiency were the most important risk factors. CONCLUSION: In our study, prognostic models built on less-granular but readily-available registry data had similar performance to models built on high-granular EHR data and showed similar transportability to a prospective COVID-19 population. Future research is needed to verify whether this finding can be confirmed for upcoming waves. The Author(s). Published by Elsevier B.V. 2022-11 2022-09-22 /pmc/articles/PMC9492397/ /pubmed/36162166 http://dx.doi.org/10.1016/j.ijmedinf.2022.104863 Text en © 2022 The Author(s) Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Vagliano, Iacopo
Schut, Martijn C.
Abu-Hanna, Ameen
Dongelmans, Dave A.
de Lange, Dylan W.
Gommers, Diederik
Cremer, Olaf L.
Bosman, Rob J.
Rigter, Sander
Wils, Evert-Jan
Frenzel, Tim
de Jong, Remko
Peters, Marco A.A.
Kamps, Marlijn J.A.
Ramnarain, Dharmanand
Nowitzky, Ralph
Nooteboom, Fleur G.C.A.
de Ruijter, Wouter
Urlings-Strop, Louise C.
Smit, Ellen G.M.
Mehagnoul-Schipper, D. Jannet
Dormans, Tom
de Jager, Cornelis P.C.
Hendriks, Stefaan H.A.
Achterberg, Sefanja
Oostdijk, Evelien
Reidinga, Auke C.
Festen-Spanjer, Barbara
Brunnekreef, Gert B.
Cornet, Alexander D.
van den Tempel, Walter
Boelens, Age D.
Koetsier, Peter
Lens, Judith
Faber, Harald J.
Karakus, A.
Entjes, Robert
de Jong, Paul
Rettig, Thijs C.D.
Reuland, M.C.
Arbous, Sesmu
Fleuren, Lucas M.
Dam, Tariq A.
Thoral, Patrick J.
Lalisang, Robbert C.A.
Tonutti, Michele
de Bruin, Daan P.
Elbers, Paul W.G.
de Keizer, Nicolette F.
Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records
title Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records
title_full Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records
title_fullStr Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records
title_full_unstemmed Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records
title_short Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records
title_sort assess and validate predictive performance of models for in-hospital mortality in covid-19 patients: a retrospective cohort study in the netherlands comparing the value of registry data with high-granular electronic health records
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492397/
https://www.ncbi.nlm.nih.gov/pubmed/36162166
http://dx.doi.org/10.1016/j.ijmedinf.2022.104863
work_keys_str_mv AT vaglianoiacopo assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT schutmartijnc assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT abuhannaameen assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT dongelmansdavea assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT delangedylanw assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT gommersdiederik assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT cremerolafl assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT bosmanrobj assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT rigtersander assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT wilsevertjan assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT frenzeltim assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT dejongremko assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT petersmarcoaa assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT kampsmarlijnja assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT ramnaraindharmanand assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT nowitzkyralph assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT nooteboomfleurgca assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT deruijterwouter assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT urlingsstroplouisec assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT smitellengm assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT mehagnoulschipperdjannet assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT dormanstom assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT dejagercornelispc assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT hendriksstefaanha assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT achterbergsefanja assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT oostdijkevelien assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT reidingaaukec assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT festenspanjerbarbara assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT brunnekreefgertb assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT cornetalexanderd assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT vandentempelwalter assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT boelensaged assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT koetsierpeter assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT lensjudith assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT faberharaldj assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT karakusa assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT entjesrobert assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT dejongpaul assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT rettigthijscd assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT reulandmc assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT arboussesmu assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT fleurenlucasm assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT damtariqa assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT thoralpatrickj assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT lalisangrobbertca assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT tonuttimichele assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT debruindaanp assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT elberspaulwg assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT dekeizernicolettef assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords
AT assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords