Cargando…
Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records
PURPOSE: To assess, validate and compare the predictive performance of models for in-hospital mortality of COVID-19 patients admitted to the intensive care unit (ICU) over two different waves of infections. Our models were built with high-granular Electronic Health Records (EHR) data versus less-gra...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492397/ https://www.ncbi.nlm.nih.gov/pubmed/36162166 http://dx.doi.org/10.1016/j.ijmedinf.2022.104863 |
_version_ | 1784793471443271680 |
---|---|
author | Vagliano, Iacopo Schut, Martijn C. Abu-Hanna, Ameen Dongelmans, Dave A. de Lange, Dylan W. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim de Jong, Remko Peters, Marco A.A. Kamps, Marlijn J.A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G.C.A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G.M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P.C. Hendriks, Stefaan H.A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C.D. Reuland, M.C. Arbous, Sesmu Fleuren, Lucas M. Dam, Tariq A. Thoral, Patrick J. Lalisang, Robbert C.A. Tonutti, Michele de Bruin, Daan P. Elbers, Paul W.G. de Keizer, Nicolette F. |
author_facet | Vagliano, Iacopo Schut, Martijn C. Abu-Hanna, Ameen Dongelmans, Dave A. de Lange, Dylan W. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim de Jong, Remko Peters, Marco A.A. Kamps, Marlijn J.A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G.C.A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G.M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P.C. Hendriks, Stefaan H.A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C.D. Reuland, M.C. Arbous, Sesmu Fleuren, Lucas M. Dam, Tariq A. Thoral, Patrick J. Lalisang, Robbert C.A. Tonutti, Michele de Bruin, Daan P. Elbers, Paul W.G. de Keizer, Nicolette F. |
author_sort | Vagliano, Iacopo |
collection | PubMed |
description | PURPOSE: To assess, validate and compare the predictive performance of models for in-hospital mortality of COVID-19 patients admitted to the intensive care unit (ICU) over two different waves of infections. Our models were built with high-granular Electronic Health Records (EHR) data versus less-granular registry data. METHODS: Observational study of all COVID-19 patients admitted to 19 Dutch ICUs participating in both the national quality registry National Intensive Care Evaluation (NICE) and the EHR-based Dutch Data Warehouse (hereafter EHR). Multiple models were developed on data from the first 24 h of ICU admissions from February to June 2020 (first COVID-19 wave) and validated on prospective patients admitted to the same ICUs between July and December 2020 (second COVID-19 wave). We assessed model discrimination, calibration, and the degree of relatedness between development and validation population. Coefficients were used to identify relevant risk factors. RESULTS: A total of 1533 patients from the EHR and 1563 from the registry were included. With high granular EHR data, the average AUROC was 0.69 (standard deviation of 0.05) for the internal validation, and the AUROC was 0.75 for the temporal validation. The registry model achieved an average AUROC of 0.76 (standard deviation of 0.05) in the internal validation and 0.77 in the temporal validation. In the EHR data, age, and respiratory-system related variables were the most important risk factors identified. In the NICE registry data, age and chronic respiratory insufficiency were the most important risk factors. CONCLUSION: In our study, prognostic models built on less-granular but readily-available registry data had similar performance to models built on high-granular EHR data and showed similar transportability to a prospective COVID-19 population. Future research is needed to verify whether this finding can be confirmed for upcoming waves. |
format | Online Article Text |
id | pubmed-9492397 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Author(s). Published by Elsevier B.V. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94923972022-09-22 Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records Vagliano, Iacopo Schut, Martijn C. Abu-Hanna, Ameen Dongelmans, Dave A. de Lange, Dylan W. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim de Jong, Remko Peters, Marco A.A. Kamps, Marlijn J.A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G.C.A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G.M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P.C. Hendriks, Stefaan H.A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C.D. Reuland, M.C. Arbous, Sesmu Fleuren, Lucas M. Dam, Tariq A. Thoral, Patrick J. Lalisang, Robbert C.A. Tonutti, Michele de Bruin, Daan P. Elbers, Paul W.G. de Keizer, Nicolette F. Int J Med Inform Article PURPOSE: To assess, validate and compare the predictive performance of models for in-hospital mortality of COVID-19 patients admitted to the intensive care unit (ICU) over two different waves of infections. Our models were built with high-granular Electronic Health Records (EHR) data versus less-granular registry data. METHODS: Observational study of all COVID-19 patients admitted to 19 Dutch ICUs participating in both the national quality registry National Intensive Care Evaluation (NICE) and the EHR-based Dutch Data Warehouse (hereafter EHR). Multiple models were developed on data from the first 24 h of ICU admissions from February to June 2020 (first COVID-19 wave) and validated on prospective patients admitted to the same ICUs between July and December 2020 (second COVID-19 wave). We assessed model discrimination, calibration, and the degree of relatedness between development and validation population. Coefficients were used to identify relevant risk factors. RESULTS: A total of 1533 patients from the EHR and 1563 from the registry were included. With high granular EHR data, the average AUROC was 0.69 (standard deviation of 0.05) for the internal validation, and the AUROC was 0.75 for the temporal validation. The registry model achieved an average AUROC of 0.76 (standard deviation of 0.05) in the internal validation and 0.77 in the temporal validation. In the EHR data, age, and respiratory-system related variables were the most important risk factors identified. In the NICE registry data, age and chronic respiratory insufficiency were the most important risk factors. CONCLUSION: In our study, prognostic models built on less-granular but readily-available registry data had similar performance to models built on high-granular EHR data and showed similar transportability to a prospective COVID-19 population. Future research is needed to verify whether this finding can be confirmed for upcoming waves. The Author(s). Published by Elsevier B.V. 2022-11 2022-09-22 /pmc/articles/PMC9492397/ /pubmed/36162166 http://dx.doi.org/10.1016/j.ijmedinf.2022.104863 Text en © 2022 The Author(s) Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Vagliano, Iacopo Schut, Martijn C. Abu-Hanna, Ameen Dongelmans, Dave A. de Lange, Dylan W. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim de Jong, Remko Peters, Marco A.A. Kamps, Marlijn J.A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G.C.A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G.M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P.C. Hendriks, Stefaan H.A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C.D. Reuland, M.C. Arbous, Sesmu Fleuren, Lucas M. Dam, Tariq A. Thoral, Patrick J. Lalisang, Robbert C.A. Tonutti, Michele de Bruin, Daan P. Elbers, Paul W.G. de Keizer, Nicolette F. Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records |
title | Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records |
title_full | Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records |
title_fullStr | Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records |
title_full_unstemmed | Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records |
title_short | Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records |
title_sort | assess and validate predictive performance of models for in-hospital mortality in covid-19 patients: a retrospective cohort study in the netherlands comparing the value of registry data with high-granular electronic health records |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492397/ https://www.ncbi.nlm.nih.gov/pubmed/36162166 http://dx.doi.org/10.1016/j.ijmedinf.2022.104863 |
work_keys_str_mv | AT vaglianoiacopo assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT schutmartijnc assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT abuhannaameen assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT dongelmansdavea assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT delangedylanw assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT gommersdiederik assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT cremerolafl assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT bosmanrobj assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT rigtersander assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT wilsevertjan assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT frenzeltim assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT dejongremko assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT petersmarcoaa assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT kampsmarlijnja assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT ramnaraindharmanand assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT nowitzkyralph assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT nooteboomfleurgca assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT deruijterwouter assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT urlingsstroplouisec assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT smitellengm assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT mehagnoulschipperdjannet assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT dormanstom assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT dejagercornelispc assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT hendriksstefaanha assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT achterbergsefanja assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT oostdijkevelien assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT reidingaaukec assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT festenspanjerbarbara assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT brunnekreefgertb assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT cornetalexanderd assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT vandentempelwalter assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT boelensaged assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT koetsierpeter assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT lensjudith assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT faberharaldj assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT karakusa assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT entjesrobert assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT dejongpaul assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT rettigthijscd assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT reulandmc assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT arboussesmu assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT fleurenlucasm assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT damtariqa assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT thoralpatrickj assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT lalisangrobbertca assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT tonuttimichele assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT debruindaanp assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT elberspaulwg assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT dekeizernicolettef assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords AT assessandvalidatepredictiveperformanceofmodelsforinhospitalmortalityincovid19patientsaretrospectivecohortstudyinthenetherlandscomparingthevalueofregistrydatawithhighgranularelectronichealthrecords |