Cargando…

A T-CNN time series classification method based on Gram matrix

Time series classification is a basic task in the field of streaming data event analysis and data mining. The existing time series classification methods have the problems of low classification accuracy and low efficiency. To solve these problems, this paper proposes a T-CNN time series classificati...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Junlu, Li, Su, Ji, Wanting, Jiang, Tian, Song, Baoyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492691/
https://www.ncbi.nlm.nih.gov/pubmed/36130982
http://dx.doi.org/10.1038/s41598-022-19758-5
Descripción
Sumario:Time series classification is a basic task in the field of streaming data event analysis and data mining. The existing time series classification methods have the problems of low classification accuracy and low efficiency. To solve these problems, this paper proposes a T-CNN time series classification method based on a Gram matrix. Specifically, we perform wavelet threshold denoising on time series to filter normal curve noise, and propose a lossless transformation method based on the Gram matrix, which converts the time series to the time domain image and retains all the information of events. Then, we propose an improved CNN time series classification method, which introduces the Toeplitz convolution kernel matrix into convolution layer calculation. Finally, we introduce a Triplet network to calculate the similarity between similar events and different classes of events, and optimize the squared loss function of CNN. The proposed T-CNN model can accelerate the convergence rate of gradient descent and improve classification accuracy. Experimental results show that, compared with the existing methods, our T-CNN time series classification method has great advantages in efficiency and accuracy.