Cargando…

Zinc detection in oil-polluted marine environment by stripping voltammetry with mercury-free nanoporous gold electrode

Detection of Zn(II) in oil-polluted seawater via square-wave anodic stripping voltammetry (SW-ASV) utilizing thin gold electrodes sputtered onto nanoporous poly(acrylic acid)-grafted-poly(vinylidene difluoride) (PAA-g-PVDF) membrane is herein reported. Prior to SW-ASV, PAA grafted nanopores demonstr...

Descripción completa

Detalles Bibliográficos
Autores principales: Clochard, M.-C., Oral, O., Wade, T. L., Cavani, O., Castellino, M., Ligiero, L. Medina, Elan, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492727/
https://www.ncbi.nlm.nih.gov/pubmed/36131077
http://dx.doi.org/10.1038/s41598-022-20067-0
_version_ 1784793541526945792
author Clochard, M.-C.
Oral, O.
Wade, T. L.
Cavani, O.
Castellino, M.
Ligiero, L. Medina
Elan, T.
author_facet Clochard, M.-C.
Oral, O.
Wade, T. L.
Cavani, O.
Castellino, M.
Ligiero, L. Medina
Elan, T.
author_sort Clochard, M.-C.
collection PubMed
description Detection of Zn(II) in oil-polluted seawater via square-wave anodic stripping voltammetry (SW-ASV) utilizing thin gold electrodes sputtered onto nanoporous poly(acrylic acid)-grafted-poly(vinylidene difluoride) (PAA-g-PVDF) membrane is herein reported. Prior to SW-ASV, PAA grafted nanopores demonstrated to efficiently trap Zn(II) ions at open circuit. This passive adsorption followed a Langmuir law. An affinity constant of 1.41 L [Formula: see text] mol[Formula: see text] and a maximum Zn(II) adsorbed mass q[Formula: see text] of 1.21 [Formula: see text] mol g[Formula: see text] were found. Applied SW-ASV protocol implied an accumulation step (− 1.2 V for 120 s) followed by a stripping step (− 1.2 to 1 V; 25 Hz; step: 4 mV; amplitude: 25 mV; acetate buffer (pH 5.5)). It revealed a Zn redox potential at − 0.8 V (Ag/AgCl pseudo-reference). Multiple measurements in synthetic waters close to the composition of production waters exhibited a decreasing precision with the number of readings R (1.65[Formula: see text] (R = 2) and 6.56[Formula: see text] (R = 3)). These membrane-electrodes should be used as disposable. The intra-batch mean precision was 14[Formula: see text] (n = 3) while inter-batches precision was 20[Formula: see text] (n = 15). Linear and linear-log calibrations allow exploitation of Zn(II) concentrations ranging from 10 to 500 [Formula: see text] g L[Formula: see text] and 100 to 1000 [Formula: see text] g L[Formula: see text] respectively. The LOD was 4.2 [Formula: see text] g L[Formula: see text] (3S/N). Thanks to obtained calibration, a detected Zn(II) content of 1 ppm in a raw production water from North Sea oil platform was determined.
format Online
Article
Text
id pubmed-9492727
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-94927272022-09-23 Zinc detection in oil-polluted marine environment by stripping voltammetry with mercury-free nanoporous gold electrode Clochard, M.-C. Oral, O. Wade, T. L. Cavani, O. Castellino, M. Ligiero, L. Medina Elan, T. Sci Rep Article Detection of Zn(II) in oil-polluted seawater via square-wave anodic stripping voltammetry (SW-ASV) utilizing thin gold electrodes sputtered onto nanoporous poly(acrylic acid)-grafted-poly(vinylidene difluoride) (PAA-g-PVDF) membrane is herein reported. Prior to SW-ASV, PAA grafted nanopores demonstrated to efficiently trap Zn(II) ions at open circuit. This passive adsorption followed a Langmuir law. An affinity constant of 1.41 L [Formula: see text] mol[Formula: see text] and a maximum Zn(II) adsorbed mass q[Formula: see text] of 1.21 [Formula: see text] mol g[Formula: see text] were found. Applied SW-ASV protocol implied an accumulation step (− 1.2 V for 120 s) followed by a stripping step (− 1.2 to 1 V; 25 Hz; step: 4 mV; amplitude: 25 mV; acetate buffer (pH 5.5)). It revealed a Zn redox potential at − 0.8 V (Ag/AgCl pseudo-reference). Multiple measurements in synthetic waters close to the composition of production waters exhibited a decreasing precision with the number of readings R (1.65[Formula: see text] (R = 2) and 6.56[Formula: see text] (R = 3)). These membrane-electrodes should be used as disposable. The intra-batch mean precision was 14[Formula: see text] (n = 3) while inter-batches precision was 20[Formula: see text] (n = 15). Linear and linear-log calibrations allow exploitation of Zn(II) concentrations ranging from 10 to 500 [Formula: see text] g L[Formula: see text] and 100 to 1000 [Formula: see text] g L[Formula: see text] respectively. The LOD was 4.2 [Formula: see text] g L[Formula: see text] (3S/N). Thanks to obtained calibration, a detected Zn(II) content of 1 ppm in a raw production water from North Sea oil platform was determined. Nature Publishing Group UK 2022-09-21 /pmc/articles/PMC9492727/ /pubmed/36131077 http://dx.doi.org/10.1038/s41598-022-20067-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Clochard, M.-C.
Oral, O.
Wade, T. L.
Cavani, O.
Castellino, M.
Ligiero, L. Medina
Elan, T.
Zinc detection in oil-polluted marine environment by stripping voltammetry with mercury-free nanoporous gold electrode
title Zinc detection in oil-polluted marine environment by stripping voltammetry with mercury-free nanoporous gold electrode
title_full Zinc detection in oil-polluted marine environment by stripping voltammetry with mercury-free nanoporous gold electrode
title_fullStr Zinc detection in oil-polluted marine environment by stripping voltammetry with mercury-free nanoporous gold electrode
title_full_unstemmed Zinc detection in oil-polluted marine environment by stripping voltammetry with mercury-free nanoporous gold electrode
title_short Zinc detection in oil-polluted marine environment by stripping voltammetry with mercury-free nanoporous gold electrode
title_sort zinc detection in oil-polluted marine environment by stripping voltammetry with mercury-free nanoporous gold electrode
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492727/
https://www.ncbi.nlm.nih.gov/pubmed/36131077
http://dx.doi.org/10.1038/s41598-022-20067-0
work_keys_str_mv AT clochardmc zincdetectioninoilpollutedmarineenvironmentbystrippingvoltammetrywithmercuryfreenanoporousgoldelectrode
AT oralo zincdetectioninoilpollutedmarineenvironmentbystrippingvoltammetrywithmercuryfreenanoporousgoldelectrode
AT wadetl zincdetectioninoilpollutedmarineenvironmentbystrippingvoltammetrywithmercuryfreenanoporousgoldelectrode
AT cavanio zincdetectioninoilpollutedmarineenvironmentbystrippingvoltammetrywithmercuryfreenanoporousgoldelectrode
AT castellinom zincdetectioninoilpollutedmarineenvironmentbystrippingvoltammetrywithmercuryfreenanoporousgoldelectrode
AT ligierolmedina zincdetectioninoilpollutedmarineenvironmentbystrippingvoltammetrywithmercuryfreenanoporousgoldelectrode
AT elant zincdetectioninoilpollutedmarineenvironmentbystrippingvoltammetrywithmercuryfreenanoporousgoldelectrode