Cargando…
A hybrid data-driven solution to facilitate safe mud window prediction
Safe mud window (SMW) defines the allowable limits of the mud weights that can be used while drilling O&G wells. Controlling the mud weight within the SMW limits would help avoid many serious problems such as wellbore instability issues, loss of circulation, etc. SMW can be defined by the minimu...
Autores principales: | Gowida, Ahmed, Ibrahim, Ahmed Farid, Elkatatny, Salaheldin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492774/ https://www.ncbi.nlm.nih.gov/pubmed/36131092 http://dx.doi.org/10.1038/s41598-022-20195-7 |
Ejemplares similares
-
Machine learning application to predict in-situ stresses from logging data
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2021) -
Prediction of the Least Principal Stresses Using Drilling Data: A Machine Learning Application
por: Gowida, Ahmed, et al.
Publicado: (2021) -
New Empirical Correlations to Estimate the Least Principal
Stresses Using Conventional Logging Data
por: Gowida, Ahmed, et al.
Publicado: (2022) -
Data-driven models to predict shale wettability for CO(2) sequestration applications
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2023) -
Data-Driven Framework
for Real-time Rheological Properties
Prediction of Flat Rheology Synthetic Oil-Based Drilling Fluids
por: Abdelaal, Ahmed, et al.
Publicado: (2023)