Cargando…
Graph-based representation for identifying individual travel activities with spatiotemporal trajectories and POI data
Individual daily travel activities (e.g., work, eating) are identified with various machine learning models (e.g., Bayesian Network, Random Forest) for understanding people’s frequent travel purposes. However, labor-intensive engineering work is often required to extract effective features. Addition...
Autores principales: | Liu, Xinyi, Wu, Meiliu, Peng, Bo, Huang, Qunying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492902/ https://www.ncbi.nlm.nih.gov/pubmed/36130956 http://dx.doi.org/10.1038/s41598-022-19441-9 |
Ejemplares similares
-
The Management of Cases of "Sui" Poi Oning
Publicado: (1884) -
Post orgasmic illness syndrome (POIS)
por: Waldinger, Marcel D.
Publicado: (2016) -
POI: Premature Ovarian Insufficiency/Pregnancy or Infertility?
por: Soave, Ilaria, et al.
Publicado: (2013) -
Spatial distribution pattern and driving mechanism of tourist attractions in Gansu Province based on POI data
por: Peng, Ruijuan, et al.
Publicado: (2023) -
Identification and analysis of urban functional area in Hangzhou based on OSM and POI data
por: Wang, Ziyi, et al.
Publicado: (2021)