Cargando…
Incorporation of Soil-Derived Covariates in Progeny Testing and Line Selection to Enhance Genomic Prediction Accuracy in Soybean Breeding
The availability of high-dimensional molecular markers has allowed plant breeding programs to maximize their efficiency through the genomic prediction of a phenotype of interest. Yield is a complex quantitative trait whose expression is sensitive to environmental stimuli. In this research, we invest...
Autores principales: | Canella Vieira, Caio, Persa, Reyna, Chen, Pengyin, Jarquin, Diego |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9493273/ https://www.ncbi.nlm.nih.gov/pubmed/36159995 http://dx.doi.org/10.3389/fgene.2022.905824 |
Ejemplares similares
-
Improve Soybean Variety Selection Accuracy Using UAV-Based High-Throughput Phenotyping Technology
por: Zhou, Jing, et al.
Publicado: (2022) -
Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning
por: Tian, Fengkai, et al.
Publicado: (2023) -
Response Surface Analysis of Genomic Prediction Accuracy Values Using Quality Control Covariates in Soybean
por: Jarquín, Diego, et al.
Publicado: (2019) -
Identification of genomic regions associated with soybean responses to off-target dicamba exposure
por: Canella Vieira, Caio, et al.
Publicado: (2022) -
Breeding for disease resistance in soybean: a global perspective
por: Lin, Feng, et al.
Publicado: (2022)