Cargando…
Discovering Long COVID Symptom Patterns: Association Rule Mining and Sentiment Analysis in Social Media Tweets
BACKGROUND: The COVID-19 pandemic is a substantial public health crisis that negatively affects human health and well-being. As a result of being infected with the coronavirus, patients can experience long-term health effects called long COVID syndrome. Multiple symptoms characterize this syndrome,...
Autores principales: | Matharaarachchi, Surani, Domaratzki, Mike, Katz, Alan, Muthukumarana, Saman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494218/ https://www.ncbi.nlm.nih.gov/pubmed/36069846 http://dx.doi.org/10.2196/37984 |
Ejemplares similares
-
Minimizing features while maintaining performance in data classification problems
por: Matharaarachchi, Surani, et al.
Publicado: (2022) -
Discovering symptom patterns of COVID-19 patients using association rule mining
por: Tandan, Meera, et al.
Publicado: (2021) -
Physical rehabilitation on social media during COVID-19: Topics and sentiments analysis of tweets
por: Yoo, Myungeun, et al.
Publicado: (2022) -
A population data-driven approach to identifying ‘Long COVID’ cases in support of diagnosis and treatment.
por: Enns, Jennifer, et al.
Publicado: (2022) -
The Painful Tweet: Text, Sentiment, and Community Structure Analyses of Tweets Pertaining to Pain
por: Tighe, Patrick J, et al.
Publicado: (2015)