Cargando…

Optimization of the incubation parameters for biogenic synthesis of WO(3) nanoparticles using Taguchi method

Green synthesis of metal nanoparticles is gathering attention due to eco-friendly processing. Tungsten oxide (WO(3)) nanoparticles have immense applications as semiconductors, antimicrobials and photo thermal materials but their synthesis using biological systems is hitherto unpublicized. The paper...

Descripción completa

Detalles Bibliográficos
Autores principales: Francis, Dali Vilma, Aiswarya, T., Gokhale, Trupti
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494235/
https://www.ncbi.nlm.nih.gov/pubmed/36158110
http://dx.doi.org/10.1016/j.heliyon.2022.e10640
Descripción
Sumario:Green synthesis of metal nanoparticles is gathering attention due to eco-friendly processing. Tungsten oxide (WO(3)) nanoparticles have immense applications as semiconductors, antimicrobials and photo thermal materials but their synthesis using biological systems is hitherto unpublicized. The paper discusses synthesis of WO(3) nanoparticles using Stenotrophomonas maltophilia and the optimization of physico-chemical parameters of incubation which influence the growth and metabolism of the bacterium and consequently the size of the WO(3) nanoparticles. The biogenic synthesis of WO(3) nanoparticles was confirmed by ATR-FTIR and X-ray diffraction analysis. Taguchi and analysis of variance method was applied to optimize the physico-chemical parameters (pH, temperature, time, aeration rate and concentration), considering particle size and poly dispersity index (PDI) of the nanoparticles as the experimental responses. Under the design of experiments technique, Taguchi's L27 array was selected to determine the optimal process parameters which could significantly reduce the particle size and PDI of WO(3) nanoparticles. Statistical analysis by signal-to-noise ratio, regression analysis and ANOVA (95% confidence level) on experimental responses confirmed pH and aeration as most influential while temperature and time as least influential parameters. pH 8, Temperature 40 °C, aeration 200 RPM, time 3 days and concentration of sodium tungstate at 1 mM (p3t3r3d3c1) was the most effective level and parameters combination for smallest particle size and PDI of WO(3) nanoparticles. Regression models developed for particle size and PDI exhibited a linear regression of 97.80% and 90.89% respectively, while the confirmation test validated the size and PDI of the experimental values against predicted results. SEM image of WO(3) nanoparticles illustrated the same particle size as that predicted, further validating the model. The study can be applied to optimize any process parameters in the industry or on biological systems.