Cargando…

Single-cell Senseless protein analysis reveals metastable states during the transition to a sensory organ fate

Cell fate decisions can be envisioned as bifurcating dynamical systems, and the decision that Drosophila cells make during sensory organ differentiation has been described as such. We extended these studies by focusing on the Senseless protein which orchestrates sensory cell fate transitions. Wing c...

Descripción completa

Detalles Bibliográficos
Autores principales: Giri, Ritika, Brady, Shannon, Papadopoulos, Dimitrios K., Carthew, Richard W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494244/
https://www.ncbi.nlm.nih.gov/pubmed/36157584
http://dx.doi.org/10.1016/j.isci.2022.105097
Descripción
Sumario:Cell fate decisions can be envisioned as bifurcating dynamical systems, and the decision that Drosophila cells make during sensory organ differentiation has been described as such. We extended these studies by focusing on the Senseless protein which orchestrates sensory cell fate transitions. Wing cells contain intermediate Senseless numbers before their fate transition, after which they express much greater numbers of Senseless molecules as they differentiate. However, the dynamics are inconsistent with it being a simple bistable system. Cells with intermediate Senseless are best modeled as residing in four discrete states, each with a distinct protein number and occupying a specific region of the tissue. Although the states are stable over time, the number of molecules in each state vary with time. The fold change in molecule number between adjacent states is invariant and robust to absolute protein number variation. Thus, cells transitioning to sensory fates exhibit metastability with relativistic properties.