Cargando…
Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia
The global population growth, climate change effects, and the rapid decline in the stock of fossil fuels increase the demand for food, water, and energy. Irrigation technologies are essential in negating poverty and food insecurity in a developing country while promoting sustainable development goal...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494259/ https://www.ncbi.nlm.nih.gov/pubmed/36158084 http://dx.doi.org/10.1016/j.heliyon.2022.e10629 |
_version_ | 1784793776417406976 |
---|---|
author | Bekele, Endeshaw Alemu Ancha, Venkata Ramayya |
author_facet | Bekele, Endeshaw Alemu Ancha, Venkata Ramayya |
author_sort | Bekele, Endeshaw Alemu |
collection | PubMed |
description | The global population growth, climate change effects, and the rapid decline in the stock of fossil fuels increase the demand for food, water, and energy. Irrigation technologies are essential in negating poverty and food insecurity in a developing country while promoting sustainable development goals. However, rain-fed agricultural activities and the lack of modern irrigation technologies in Ethiopia aggravate the problem. This work presents a transient performance investigation of a solar dish concentrator coupled with a Stirling engine and thermoelectric generator for the small-scale irrigation system. A solar dish concentrator with a 2.8 m aperture diameter and 0.4 m depth was used, and Stirling engine analysis was performed using a second-order adiabatic model. System performance was investigated at different operating parameters to predict output power and pump flow rate variation with solar time for a selected irrigation season. Results show that at a heat source temperature of 413.8 K, the thermoelectric unit gives maximum electrical power of 5.2 W at an efficiency of 2.78%. At the same time, the Stirling engine-driven pump provides a cumulative flow rate of 173,594.95 L per day at a thermal efficiency of 18.61%. The output power and pump flow rate reach their maximum at noontime for all selected irrigation seasons. The effect of regenerator effectiveness on the thermal efficiency of the Stirling engine was also examined, and the findings indicate that the Stirling engine's thermal efficiency rises with regenerator effectiveness. Using a solar thermal irrigation system in a location with a high solar radiation potential allows small farmers to generate more income and contribute to the country's food security. |
format | Online Article Text |
id | pubmed-9494259 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-94942592022-09-23 Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia Bekele, Endeshaw Alemu Ancha, Venkata Ramayya Heliyon Research Article The global population growth, climate change effects, and the rapid decline in the stock of fossil fuels increase the demand for food, water, and energy. Irrigation technologies are essential in negating poverty and food insecurity in a developing country while promoting sustainable development goals. However, rain-fed agricultural activities and the lack of modern irrigation technologies in Ethiopia aggravate the problem. This work presents a transient performance investigation of a solar dish concentrator coupled with a Stirling engine and thermoelectric generator for the small-scale irrigation system. A solar dish concentrator with a 2.8 m aperture diameter and 0.4 m depth was used, and Stirling engine analysis was performed using a second-order adiabatic model. System performance was investigated at different operating parameters to predict output power and pump flow rate variation with solar time for a selected irrigation season. Results show that at a heat source temperature of 413.8 K, the thermoelectric unit gives maximum electrical power of 5.2 W at an efficiency of 2.78%. At the same time, the Stirling engine-driven pump provides a cumulative flow rate of 173,594.95 L per day at a thermal efficiency of 18.61%. The output power and pump flow rate reach their maximum at noontime for all selected irrigation seasons. The effect of regenerator effectiveness on the thermal efficiency of the Stirling engine was also examined, and the findings indicate that the Stirling engine's thermal efficiency rises with regenerator effectiveness. Using a solar thermal irrigation system in a location with a high solar radiation potential allows small farmers to generate more income and contribute to the country's food security. Elsevier 2022-09-16 /pmc/articles/PMC9494259/ /pubmed/36158084 http://dx.doi.org/10.1016/j.heliyon.2022.e10629 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Bekele, Endeshaw Alemu Ancha, Venkata Ramayya Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia |
title | Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia |
title_full | Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia |
title_fullStr | Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia |
title_full_unstemmed | Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia |
title_short | Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia |
title_sort | transient performance prediction of solar dish concentrator integrated with stirling and teg for small scale irrigation system: a case of ethiopia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494259/ https://www.ncbi.nlm.nih.gov/pubmed/36158084 http://dx.doi.org/10.1016/j.heliyon.2022.e10629 |
work_keys_str_mv | AT bekeleendeshawalemu transientperformancepredictionofsolardishconcentratorintegratedwithstirlingandtegforsmallscaleirrigationsystemacaseofethiopia AT anchavenkataramayya transientperformancepredictionofsolardishconcentratorintegratedwithstirlingandtegforsmallscaleirrigationsystemacaseofethiopia |