Cargando…
Practical guidelines of online MR-guided adaptive radiotherapy
The first magnetic resonance (MR)-guided radiotherapy system in Japan was installed in May 2017. Implementation of online MR-guided adaptive radiotherapy (MRgART) began in February 2018. Online MRgART offers greater treatment accuracy owing to the high soft-tissue contrast in MR-images (MRI), compar...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494538/ https://www.ncbi.nlm.nih.gov/pubmed/35946325 http://dx.doi.org/10.1093/jrr/rrac048 |
Sumario: | The first magnetic resonance (MR)-guided radiotherapy system in Japan was installed in May 2017. Implementation of online MR-guided adaptive radiotherapy (MRgART) began in February 2018. Online MRgART offers greater treatment accuracy owing to the high soft-tissue contrast in MR-images (MRI), compared to that in X-ray imaging. The Japanese Society for Magnetic Resonance in Medicine (JSMRM), Japan Society of Medical Physics (JSMP), Japan Radiological Society (JRS), Japanese Society of Radiological Technology (JSRT), and Japanese Society for Radiation Oncology (JASTRO) jointly established the comprehensive practical guidelines for online MRgART. These guidelines propose the essential requirements for clinical implementation of online MRgART with respect to equipment, personnel, institutional environment, practice guidance, and quality assurance/quality control (QA/QC). The minimum requirements for related equipment and QA/QC tools, recommendations for safe operation of MRI system, and the implementation system are described. The accuracy of monitor chamber and detector in dose measurements should be confirmed because of the presence of magnetic field. The ionization chamber should be MR-compatible. Non-MR-compatible devices should be used in an area that is not affected by the static magnetic field (outside the five Gauss line), and their operation should be checked to ensure that they do not affect the MR image quality. Dose verification should be performed using an independent dose verification system that has been confirmed to be reliable through commissioning. This guideline proposes the checklists to ensure the safety of online MRgART. Successful clinical implementation of online MRgART requires close collaboration between physician, radiological technologist, nurse, and medical physicist. |
---|