Cargando…
A method for identifying the cause of inefficient salt-doping in organic semiconductors
Doping to enhance the electrical conductivity of organic semiconductors is not without its challenges: The efficacy of this process depends on many factors and it is not always clear how to remedy poor doping. In the case of doping with salts, one of the possible causes of poor doping is a limited y...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494613/ https://www.ncbi.nlm.nih.gov/pubmed/36324637 http://dx.doi.org/10.1039/d1tc06062g |
_version_ | 1784793831349157888 |
---|---|
author | Rahimichatri, A. Liu, J. Jahani, F. Qiu, L. Chiechi, R. C. Hummelen, J. C. Koster, L. J. A. |
author_facet | Rahimichatri, A. Liu, J. Jahani, F. Qiu, L. Chiechi, R. C. Hummelen, J. C. Koster, L. J. A. |
author_sort | Rahimichatri, A. |
collection | PubMed |
description | Doping to enhance the electrical conductivity of organic semiconductors is not without its challenges: The efficacy of this process depends on many factors and it is not always clear how to remedy poor doping. In the case of doping with salts, one of the possible causes of poor doping is a limited yield of integer charge transfer resulting in the presence of both cations and anions in the film. The charge of such ions can severely limit the electrical conductivity, but their presence is not easily determined. Here we introduce a set of simple conductivity measurements to determine whether poor doping in the case where the dopant is a salt is due to limited integer charge transfer. By tracking how the conductivity changes over time when applying a bias voltage for an extended amount of time we can pinpoint whether unwanted ions are present in the film. Firstly, we introduce the principle of this approach by performing numerical simulations that include the movement of ions. We show that the conductivity can increase or decrease depending on the type of ions present in the film. Next, we show that the movement of these dopant ions causes a build-up of space-charge, which makes the current–voltage characteristic non-linear. Next, we illustrate how this approach may be used in practice by doping a fullerene derivative with a series of organic salts. We thus provide a tool to make the optimization of doping more rational. |
format | Online Article Text |
id | pubmed-9494613 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-94946132022-10-31 A method for identifying the cause of inefficient salt-doping in organic semiconductors Rahimichatri, A. Liu, J. Jahani, F. Qiu, L. Chiechi, R. C. Hummelen, J. C. Koster, L. J. A. J Mater Chem C Mater Chemistry Doping to enhance the electrical conductivity of organic semiconductors is not without its challenges: The efficacy of this process depends on many factors and it is not always clear how to remedy poor doping. In the case of doping with salts, one of the possible causes of poor doping is a limited yield of integer charge transfer resulting in the presence of both cations and anions in the film. The charge of such ions can severely limit the electrical conductivity, but their presence is not easily determined. Here we introduce a set of simple conductivity measurements to determine whether poor doping in the case where the dopant is a salt is due to limited integer charge transfer. By tracking how the conductivity changes over time when applying a bias voltage for an extended amount of time we can pinpoint whether unwanted ions are present in the film. Firstly, we introduce the principle of this approach by performing numerical simulations that include the movement of ions. We show that the conductivity can increase or decrease depending on the type of ions present in the film. Next, we show that the movement of these dopant ions causes a build-up of space-charge, which makes the current–voltage characteristic non-linear. Next, we illustrate how this approach may be used in practice by doping a fullerene derivative with a series of organic salts. We thus provide a tool to make the optimization of doping more rational. The Royal Society of Chemistry 2022-08-24 /pmc/articles/PMC9494613/ /pubmed/36324637 http://dx.doi.org/10.1039/d1tc06062g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Rahimichatri, A. Liu, J. Jahani, F. Qiu, L. Chiechi, R. C. Hummelen, J. C. Koster, L. J. A. A method for identifying the cause of inefficient salt-doping in organic semiconductors |
title | A method for identifying the cause of inefficient salt-doping in organic semiconductors |
title_full | A method for identifying the cause of inefficient salt-doping in organic semiconductors |
title_fullStr | A method for identifying the cause of inefficient salt-doping in organic semiconductors |
title_full_unstemmed | A method for identifying the cause of inefficient salt-doping in organic semiconductors |
title_short | A method for identifying the cause of inefficient salt-doping in organic semiconductors |
title_sort | method for identifying the cause of inefficient salt-doping in organic semiconductors |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494613/ https://www.ncbi.nlm.nih.gov/pubmed/36324637 http://dx.doi.org/10.1039/d1tc06062g |
work_keys_str_mv | AT rahimichatria amethodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT liuj amethodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT jahanif amethodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT qiul amethodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT chiechirc amethodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT hummelenjc amethodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT kosterlja amethodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT rahimichatria methodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT liuj methodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT jahanif methodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT qiul methodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT chiechirc methodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT hummelenjc methodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors AT kosterlja methodforidentifyingthecauseofinefficientsaltdopinginorganicsemiconductors |