Cargando…
Emerging Biomedical Applications of the Vesicular Stomatitis Virus Glycoprotein
[Image: see text] Nanoparticles (NPs) made of metals, polymers, micelles, and liposomes are increasingly being used in various biomedical applications. However, most of these NPs are hazardous for long- and short-term use and hence have restricted biomedical applications. Therefore, naturally derive...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494638/ https://www.ncbi.nlm.nih.gov/pubmed/36157773 http://dx.doi.org/10.1021/acsomega.2c03517 |
Sumario: | [Image: see text] Nanoparticles (NPs) made of metals, polymers, micelles, and liposomes are increasingly being used in various biomedical applications. However, most of these NPs are hazardous for long- and short-term use and hence have restricted biomedical applications. Therefore, naturally derived, biocompatible, and biodegradable nanoconstructs are being explored for such applications. Inspired by the biology of viruses, researchers are exploring the viral proteins that hold considerable promise in biomedical applications. The viral proteins are highly stable and further amenable to suit specific biological applications. Among various viral proteins, vesicular stomatitis virus glycoprotein (VSV-G) has emerged as one of the most versatile platforms for biomedical applications. Starting with their first major use in lentivirus/retrovirus packaging systems, the VSV-G-based reagents have been tested for diverse biomedical use, many of which are at various stages of clinical trials. This manuscript discusses the recent advancements in the use of the VSV-G-based reagents in medical, biological research, and clinical applications particularly highlighting emerging applications in biomedical imaging. |
---|