Cargando…
Review of Kerogen’s Geomechanical Properties: Experiments and Molecular Simulation
[Image: see text] Measuring the mechanical properties of kerogen, the predominant constituent of organic matter in shale is exceedingly difficult as it constitutes small-scale aggregates interspersed in rocks. Kerogen is characterized by significantly lower stiffness compared to inorganic minerals,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494651/ https://www.ncbi.nlm.nih.gov/pubmed/36157788 http://dx.doi.org/10.1021/acsomega.2c03136 |
_version_ | 1784793839960064000 |
---|---|
author | Othman, Amro Glatz, Guenther Aljawad, Murtada Saleh Alafnan, Saad Alarifi, Sulaiman A. Al Ramadan, Mustafa |
author_facet | Othman, Amro Glatz, Guenther Aljawad, Murtada Saleh Alafnan, Saad Alarifi, Sulaiman A. Al Ramadan, Mustafa |
author_sort | Othman, Amro |
collection | PubMed |
description | [Image: see text] Measuring the mechanical properties of kerogen, the predominant constituent of organic matter in shale is exceedingly difficult as it constitutes small-scale aggregates interspersed in rocks. Kerogen is characterized by significantly lower stiffness compared to inorganic minerals, thereby the kerogen regions are potential areas for study during, for example, drilling or macroscopic fracture propagation in the course of hydraulic fracturing. For instance, the elastic modulus of kerogen-rich spots is around 10 GPa, while it is about 70 GPa for quartz. Failure of the kerogen nanocantilever beam shows an elastic strain-hardening behavior, indicating a higher energy requirement to propagate a crack. Studies illustrated that the kerogen’s mechanical properties are controlled by maceral composition and are positively correlated to the maturity level. This paper provides a comprehensive review of how the mechanical properties of kerogen are elucidated experimentally and contrast the results with the properties delineated from molecular simulation. In addition, we relate kerogen innate attributes, such as maturity and type, to the physical qualities measured and substantiate why accurate knowledge of the mechanical characteristics is pivotal from a hydraulic fracturing perspective. |
format | Online Article Text |
id | pubmed-9494651 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-94946512022-09-23 Review of Kerogen’s Geomechanical Properties: Experiments and Molecular Simulation Othman, Amro Glatz, Guenther Aljawad, Murtada Saleh Alafnan, Saad Alarifi, Sulaiman A. Al Ramadan, Mustafa ACS Omega [Image: see text] Measuring the mechanical properties of kerogen, the predominant constituent of organic matter in shale is exceedingly difficult as it constitutes small-scale aggregates interspersed in rocks. Kerogen is characterized by significantly lower stiffness compared to inorganic minerals, thereby the kerogen regions are potential areas for study during, for example, drilling or macroscopic fracture propagation in the course of hydraulic fracturing. For instance, the elastic modulus of kerogen-rich spots is around 10 GPa, while it is about 70 GPa for quartz. Failure of the kerogen nanocantilever beam shows an elastic strain-hardening behavior, indicating a higher energy requirement to propagate a crack. Studies illustrated that the kerogen’s mechanical properties are controlled by maceral composition and are positively correlated to the maturity level. This paper provides a comprehensive review of how the mechanical properties of kerogen are elucidated experimentally and contrast the results with the properties delineated from molecular simulation. In addition, we relate kerogen innate attributes, such as maturity and type, to the physical qualities measured and substantiate why accurate knowledge of the mechanical characteristics is pivotal from a hydraulic fracturing perspective. American Chemical Society 2022-09-07 /pmc/articles/PMC9494651/ /pubmed/36157788 http://dx.doi.org/10.1021/acsomega.2c03136 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Othman, Amro Glatz, Guenther Aljawad, Murtada Saleh Alafnan, Saad Alarifi, Sulaiman A. Al Ramadan, Mustafa Review of Kerogen’s Geomechanical Properties: Experiments and Molecular Simulation |
title | Review of Kerogen’s Geomechanical Properties:
Experiments and Molecular Simulation |
title_full | Review of Kerogen’s Geomechanical Properties:
Experiments and Molecular Simulation |
title_fullStr | Review of Kerogen’s Geomechanical Properties:
Experiments and Molecular Simulation |
title_full_unstemmed | Review of Kerogen’s Geomechanical Properties:
Experiments and Molecular Simulation |
title_short | Review of Kerogen’s Geomechanical Properties:
Experiments and Molecular Simulation |
title_sort | review of kerogen’s geomechanical properties:
experiments and molecular simulation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494651/ https://www.ncbi.nlm.nih.gov/pubmed/36157788 http://dx.doi.org/10.1021/acsomega.2c03136 |
work_keys_str_mv | AT othmanamro reviewofkerogensgeomechanicalpropertiesexperimentsandmolecularsimulation AT glatzguenther reviewofkerogensgeomechanicalpropertiesexperimentsandmolecularsimulation AT aljawadmurtadasaleh reviewofkerogensgeomechanicalpropertiesexperimentsandmolecularsimulation AT alafnansaad reviewofkerogensgeomechanicalpropertiesexperimentsandmolecularsimulation AT alarifisulaimana reviewofkerogensgeomechanicalpropertiesexperimentsandmolecularsimulation AT alramadanmustafa reviewofkerogensgeomechanicalpropertiesexperimentsandmolecularsimulation |